Faculty Directory

Dr. Suvankar Chakraverty

(Associate Professor, Scientist-E, Head of the Unit)

Designing (and understanding the physical properties) of new materials with integrated functionalities for spin-electronics (spintronics / skyrmionics) devices in the form of thin films and interfaces with atomic scale control and monitoring the growth process using laser molecular beam epitaxy method.  

CONTACT INFORMATION :

Research Interest

  • Design new materials in form of thin films, interface or super-lattice for magneto-opto-electronic devices and understanding their physical properties.

    A. Designing New materials in thin film or interface form using laser molecular beam epitaxy.

    B. 2-Dimensional electron gas at oxide interface.

    C. Strong spin orbit couple system: Rashba effect.

    D. Magnetic Skyrmions.

    E. Strain induced artificial physical properties.

    F Super-lattice for integrated or emergent physical properties.

    G. Double perovskite oxides for half metallic antiferromagnets.

Research Highlights

  • Ruchi Tomar et. al. studied the origin of the conductivity at the interface of two insulating perovskite oxides which is a matter of intensive studies.The conductivity generated at the interface of insulating LaVO3(LVO) and SrTiO3 (STO) is explained in terms of polar catastrophe in the paper "Conducting LaVO_3/SrTiO_3 interface: Is cationic stoichiometry mandatory?"  Here, the authors grown LVO films on (001) TiO2terminated STO substrate employing pulsed laser deposition technique and demonstrate a transition from conducting to insulating interface by changing the Lastoichiometry by only 1%, whereby such transition takes place for Ladeficient films. The effect of cation (non) stoichiometry of LVO film on both carrier density and mobility is studied and compared with previously reported LaAlO3–STO interface.                                                                                       
    Click the empty space at the right for more details: https://doi.org/10.1002/admi.201900941
  • Neha Wadehra from Dr. Suvankar Chakraverty's group presented the creation of artificial electrical domains on the conducting surface of KTaO3 (KTO) having strong Spin orbit coupling. In this work, a conductive atomic force microscopy tip has been used to induce extremely small electrically active charge domains on the surface of KTO. The versatility of creating such nano domains is that the features can be written and erased with nanometer scale precision. The written signal (phase difference between the written and unwritten regions) on KTO has turned out to be much higher than that on other reported perovskite oxides. Kelvin probe force microscopy measurements are performed to probe the surface potential and work function changes in the regions of nano-electrical domains. Magnetic force microscopy measurements suggest generation of a magnetic field when electrostatic charge is written in a dipolar configuration which can be utilized in future nano-electric devices.
    Click the empty space at the right for more details:  https://doi.org/10.1063/1.5087035
     
     

     

  • Neha Wadehra et. al. paper got published in Nature Communication titled "Planar Hall effect and anisotropic magnetoresistance in polar-polar interface of LaVO_3-KTaO_3 with strong spin-orbit coupling" in Feb. , 2020. They reported a novel conducting interface by placing KTO with another insulator, LaVO_3 and reported planar Hall effect (PHE) and anisotropic magnetoresistance (AMR) measurements. This interface exhibits a signature of strong spin orbit coupling. The experimental observations of two fold AMR and PHE at low magnetic fields (B) is similar to those obtained for topological systems and can be intuitively understood using a phenomenological theory for a Rashba spin-split system. 

    Click the link for more detail:  https://www.nature.com/articles/s41467-020-14689-z



  • DST acknowledged the work by  Dr. Suvankar Chakraverty and his group in an article titled by Mobile 2D electron gas at oxide interfaces by INST is a promising candidate in modern electronic devices. The research by Dr. Suvankar Chakraverty and his group from INST has been carried out through world-class capabilities to produce highest-quality oxide thin films, interface and heterostructures and novel measurements of emergent phenomena arising from quantum phenomenon coupled with the theory of relativity:  Rashba Effects (momentum dependent splitting of spin-bands in an electronic system) in 2d-electron gas at the interface of two insulating oxide layers, where the magnetic state of an electron (q-bit) can be control using electric field. It exhibits a perfect blending of the theory of relativity and quantum mechanical phenomena.The study has important consequences for not just basic physics but also applications to spintronics, memory devices, dissipationless electronics and quantum devices.
    Click the link for more detail: 
    https://dst.gov.in/mobile-2d-electron-gas-oxide-interfaces-inst-promising-candidate-modern-electronic-devices

     

PhD Students

  • Mr. Manish

    Email: manish.ph18210@inst.ac.in

    Reg. No.: PH18210

    Working Since Aug, 2018
  • Ms. Saveena Goyal

    Email: saveena.ph16227@inst.ac.in

    Reg. No.: PH16227, UGC-JRF

    Working Since Jan, 2017
  • Anamika Kumari

    Email: anamika.ph18201@inst.ac.in

    Reg. No.: PH18201

    Working Since Aug, 2018
  • Ripudaman Kaur

    Email: ripudaman.ph19301007@inst.ac.in

    Reg. No.: PH19301007

    Working Since Aug, 2019
  • Sharmistha

    Email: sharmisthasamota2050@gmail.com

    Reg. No.: 2018-EZ-112; CSIR- JRF; Co-Supervisor Prof. Anupama Sharma (Panjab Uni. , CHD)

    Working Since Aug, 2018
  • Ms. Anshu Gupta

    Email: anshu.ph19221@inst.ac.in

    Reg. No.: PH19221, UGC-JRF

    Working Since Aug, 2019
  • Ms. Harsha

    Email: harsha.ph19238@inst.ac.in

    Reg. No.: PH19238

    Working Since Jan, 2020

PhD Students

  • Ms. Neha Wadehra

    Email: neha.ph14219@inst.ac.in

    Reg. No.: PH14219; Thesis submitted, PostDoc offered at Cornell University

  • Ms. Ruchi Tomar Km

    Email: royalsruchi@gmail.com

    Reg. No.: PH14226; Thesis submitted, PostDoc offered at NIMS Japan


Project - JRF/SRF

  • Nand Kumar

    Email: nand.rp151621@inst.ac.in

    Reg. No.: RP151621; Co-supervisor Prof. Sanjeev Kumar(PEC, CHD)


  1. Tuning the electrical state of 2DEG at LaVO3-KTaO3 interface: effect of light and electrostatic gate: Saveena Goyal, Neha Wadehra, Suvankar Chakraverty, (2020) Advanced Materials Interfaces, 000: 2000646. DOI: https://doi.org/10.1002/admi.202000646

  2. Persistent photoconductivity at LaVO3-SrTiO3 interface: Saveena Goyal,Ajit Singh,Ruchi Tomar,Ripudaman kaur,Chandan Bera,Suvankar Chakraverty, (2020) Solid State Communications, 113930. DOI: https://doi.org/10.1016/j.ssc.2020.113930

  3. Planar Hall effect and anisotropic magnetoresistance in a polar-polar interface of LaVO3-KTaO3 with strong spin-orbit coupling: N. Wadehra,R. Tomar,R. K. Gopal,Y. Singh,S. Dattagupta, S. Chakraverty, (2020) Nature communication, 11: 874(1-7). DOI: 10.1038/s41467-020-14689-z

  4. Nano-electrical domain writing for oxide electronics: N. Wadehra, N. Kumar,S. Mishra,R. Tomar,S. Chakraverty, (2020) Applied Surface Science, 509: 145214. DOI: 10.1016/j.apsusc.2019.145214

  5. Design of process for stabilization of La2NiMnO6 nanorods and their magnetic properties: V. M. Gaikwad,K. K. Yadav,Sunain,S. Chakraverty,S. E. Lofland,K.V. Ramanujachary,S. T. Nishanthi,A. K. Ganguli,Menaka Jha, (2019) Journal of Magnetism and Magnetic Materials, 492: 165652. DOI: 10.1016/j.jmmm.2019.165652

  6. Multiple helimagnetic phases in triclinic CuSeO3: Ruchi Tomar,Sonali Kakkar,Saveena Goyal,M. Manolata Devi,Chandan Bera,S. Chakraverty, (2019) Journal of Magnetism and Magnetic Materials, 497: 165945. DOI: 10.1016/j.jmmm.2019.165945

  7. Conducting LaVO3/SrTiO3 Interface: Is Cationic Stoichiometry Mandatory?: R. Tomar,R. M. Varma,N. Kumar, D. D. Sarma, D. Maryenko,S. Chakraverty, (2019) Advaned Material Interfaces, 1900941(1-6). DOI: 10.1002/admi.201900941

  8. Defects, conductivity and photoconductivity in KTaO3: R. Tomar,N. Wadehra,S. Kumar,A. Venkatesan,D. D. Sarma,D. Maryenko,S. Chakraverty\, (2019) Journal of Applied Physics, 126: 35303. DOI: 10.1063/1.5099546

  9. Electrostatic memory in KTaO3: N. Wadehra,S. Chakraverty, (2019) Applied Physics Letters, 114: 163103(1-5). DOI: 10.1063/1.5087035

  10. The limit to realize an isolated magnetic single skyrmionic state: M. M. Devi,W. Koshibae,G. Sharma,R. Tomar,V. M. Gaikwad,R. M. Varma,M. N. Nair,M. Jha,D. D. Sarma,R. Chatterjee,A. K. Ganguli,S. Chakraverty, (2019) Journal of Materials Chemistry C, . DOI: 10.1039/c8tc03968b

  11. Observation of planar Hall effect in Type-II Dirac semimetal PtTe2: A. Vashist,R. K. Singh,N. Wadehra,S. Chakraverty,Y Singh, (2018) Arxiv, . DOI: arXiv:1812.06485

  12. Type-II Dirac semimetal candidates ATe2 (A = Pt, Pd): A de Haas-van Alphen study: Amit,R. K. Singh,N. Wadehra,S. Chakraverty,Y. Singh, (2018) Physical Review Materials, 2: 114202. DOI: 10.1103/PhysRevMaterials.2.114202

  13. New low temperature process for stabilization of nanostructured La2NiMnO6 and their magnetic properties: V. M. Gaikwad,K. K. Yadav,S. E. Lofland,K. V. Ramanujachary,S. Chakraverty,A. K. Ganguli,M. Jha, (2018) Journal of Magnetism and Magnetic Materials, 471: 8 to 13. DOI: 10.1016/j.jmmm.2018.08.081

  14. Low field manifestation of spiral ordering in sheet like BiFeO3 nanostructures: R. Tomar,N. Wadehra,V. M. Gaikwad,S. Chakraverty, (2018) AIP Advances, 8: 85306. DOI: 10.1063/1.5040710

  15. Influence of Fe substitution on structural and magnetic features of BiMn2O5 nanostructures: V. M. Gaikwad,S. Goyal,P. Yanda,A. Sundaresan,S. Chakraverty,A. K. Ganguli, (2018) Journal of Magnetism and Magnetic Materials, 452: 120. DOI: 10.1016/j.jmmm.2017.11.101

  16. Growth of highly crystalline and large scale monolayer MoS2 by CVD: The role of substrate position: Nand Kumar, Ruchi Tomar, Neha Wadehra, M Manolata Devi,Bhanu Prakash,S. Chakraverty, (2018) Crystal Research and Technology, 1800002: 53. DOI: 10.1002/crat.201800002

  17. Efficient synthesis and characterization of Cu2OSeO3 nanoparticles via hydrothermal route: M M Devi, AK Ganguli, S Chakraverty,M. Jha, (2017) Materials Research Express, 4: 115007. DOI: 10.1088/2053-1591/aa9448

  18. Electronic structure modification of the KTaO3 single-crystal surface by Ar+ bombardment: N. Wadehra,R. Tomar,S. Halder,M. Sharma,I. Singh,N. Jena,B. Prakash,A. D. Sarkar,C. Bera,A. Venkatesan,S. Chakraverty, (2017) Physical Review B, 96: 115423(6). DOI: 10.1103/PhysRevB.96.115423

  19. Electrical domain writing and nanoscale potential modulation on LaVO3/SrTiO3: M. Balal,S. Sanwlani,N. Wadehra,S. Chakraverty,G. Sheet, (2017) Applied Physcis Letters, 110: 261604 . DOI: 10.1063/1.4990963

  20. Realization of single terminated surface of perovskite oxide single crystals and their band profile (LaAlO3)0.3(Sr2AlTaO6)0.7, SrTiO3 and KTaO3 case study: Ruchi Tomar, Neha Wadehra, Vaishali Budhiraja,Bhanu Prakash,S Chakraverty, (2017) Applied Surface Science, 427: 861-866. DOI: 10.1016/j.apsusc.2017.08.101

  21. High anisotropic thermoelectric effect in palladium phosphide sulphide: P. Kaur, S. Chakraverty, A. K. Ganguli,C. Bera, (2017) Phys. Status Solidi B, . DOI: 10.1002/pssb.201700021

  22.  Biocompatible ferrite nanoparticles for hyperthermia: effect of polydispersity, anisotropy energy and inter-particle interaction Mater: N. Wadehra,R. Gupta,B. Prakash,D. Sharma, S. Chakraverty, (2017) Material Research Express, 4: 25037. DOI: 10.1088/2053-1591/aa5d93

  23. Photoinduced demagnetization and insulator-to-metal transition in ferromagnetic insulating BaFeO3 thin films: T. Tsuyama,S. Chakraverty,S. Macke,N. Pontius,C. Schüßler-Langeheine,H. Y. Hwang,Y. Tokura,H. Wadati, (2016) Physical Review Letters, 116: 256402(5). DOI: 10.1103/PhysRevLett.116.256402

  24. Graphene/Nanoporous-Silica Heterostructure based Hydrophobic Antireflective Coating: S. De,J. Singh,B. Prakash,S. Chakraverty, K. Ghosh, (2016) Materials Today Communications, 8: 41-45. DOI:  10.1016/j.mtcomm.2016.04.016

  25. Realization of single-terminated nano step-and terrace-like surface of SrTiO3 single crystals: Bhanu Prakash,S Chakraverty, (2015) Current Science, 108: . DOI: 10.1016/j.ssc.2015.04.009

  26. Realization of atomically flat steps and terraces like surface of SrTiO3 (001) single crystal by hot water etching and high temperature annealing: Bhanu Prakash,S Chakraverty, (2015) Solid State Communications, 213-214: 28-30. DOI: 10.1016/j.ssc.2015.04.009

  27. X-ray spectroscopic study of BaFeO3 thin films: An Fe4+ ferromagnetic insulator: T. Tsuyama,T. Matsuda,S. Chakraverty,J. Okamoto, E. Ikenaga,A. Tanaka,T. Mizokawa,H. Y. Hwang,Y. Tokura,H. Wadati, (2015) Physical Review B, 91: 115101. DOI: 10.1103/PhysRevB.91.115101

  28. In-plane terahertz response of thin film Sr2RuO4: Y. Takahashi,S. Chakraverty,M. Kawasaki,H. Y. Hwang,Y. Tokura, (2014) Physical Review B, 89: 165116. DOI: 10.1103/PhysRevB.89.165116

  29. Multiple helimagnetic phases and topological Hall effect in epitaxial thin films of pristine and Co-doped SrFeO3 : S. Chakraverty,T. Matsuda,H. Wadati,J. Okamoto,Y. Yamasaki,H. Nakao,Y. Murakami,S. Ishiwata,M. Kawasaki,Y. Taguchi,Y. Tokura,H. Y. Hwang, (2013) Physical Review B, 88: 220405. DOI: 10.1103/PhysRevB.88.220405

  30. BaFeO3 cubic single crystalline thin film: A ferromagnetic insulator: S. Chakraverty,T. Matsuda,N. Ogawa,H. Wadati,E. Ikenaga,M. Kawasaki,Y. Tokura,H. Y. Hwang, (2013) Applied Physics Letters, 103:  142416 . DOI: 10.1063/1.4824210

  31. Atomic scale strucrutre and electronic proeperty of La2FeCrO6/SrTiO3 interface: S. Lv,M. Saito,Z. Wang,C. Chen, S. Chakraverty,M. Kawasaki,Y. Ikuhara, (2013) Journal of Applied Physics, 114: 113705. DOI: 10.1063/1.4821795

  32. Engineered spin-valve type magnetoresistance in Fe3O4-CoFe2O4 core-shell nanoparticles : P. A. Kumar, S. Ray,S.  Chakraverty,D. D. Sarma, (2013) Applied Physics letters, 103:  102406. DOI: 10.1063/1.4819956

  33. Spontaneous B-site order and metallic ferrimagnetism in LaSrVMoO6 grown by pulsed laser deposition : S. Chakraverty,X. Z. Yu,M .Kawasaki,Y.Tokura,H. Y. Hwang, (2013) Applied Physics Letters, 102: 222406. DOI: 10.1063/1.4809937

  34. Atomistic geometry and bonding characteristics at the Sr2FeTaO6/SrTiO3 interface: S. Lv,M. Saito,Z. Wang,S. Chakraverty,M. Kawasaki,Y. Ikuhara, (2013) Applied Physics Letters, 102: 221602. DOI: 10.1063/1.4809536

  35. Spontaneous atomic ordering and magnetism in epitaxially stabilized double perovskites: A. Ohtomo,S. Chakraverty,H. Mashiko,T. Oshima,M. Kawasaki, (2013) Journal of Material Research, 28: 689-695. DOI: 10.1557/jmr.2012.438

  36. Epitaxially Stabilized EuMoO3: A New Itinerant Ferromagne: Y. Kozuka,H. Seki,T. C. Fujita,S. Chakraverty,K. Yoshimatsu,H. Kumigashira,M. Oshima,M. S. Bahramy,R. Arita,M. Kawasaki, (2012) American Chemical Society, 24: 3746. DOI: 10.1021/cm302231k

  37. Magnetoresistance and electroresistance effect in Fe3O4 nanoparticle system: P. A. Kumar,S. Ray,S. Chakraverty,D. D. Sarma, (2012) Journal of Experimental Nanoscience, 391-397. DOI: 10.1080/17458080.2012.662657

  38. Magnetic properties of Sr2FeTaO6 double perovskite epitaxially grown by pulsed-laser deposition: S. Chakraverty,M. Saito,S. Tsukimoto,Y. Ikuhara,A. Ohtomo,M. Kawasaki, (2011) Applied Physics letters, 99: 223101. DOI: 10.1063/1.3663214

  39. Magnetic and electronic properties of ordered double-perovskite La2VMnO6 thin films:  S. Chakraverty,K. Yoshimatsu,Y. Kozuka,H. Kumigashira,M. Oshima,T. Makino,A. Ohtomo,M. Kawasaki, (2011) Physical Review B, 84: 132411(4). DOI: 10.1103/PhysRevB.84.132411

  40. Ferrimagnetism and spontaneous ordering of transition metals in double perovskite La2CrFeO6 films: S. Chakraverty,A. Ohtomo,D. Okuyama,M. Saito,M. Okude,R. Kumai,T. Arima,Y. Tokura,S. Tsukimoto,Y. Ikuhara,M. Kawasaki, (2011) Physical Review B, 84: 064436(5). DOI: 10.1103/PhysRevB.84.064436

  41. Controlled B-site ordering in Sr2CrReO6 double perovskite films by using pulsed laser interval deposition: S. Chakraverty,A. Ohtomo,M. Kawasaki, (2010) Applied Physics letters, 97: 243107. DOI: 10.1063/1.3525578

  42. Epitaxial Structure of (001) and (111)-Oriented Perovskite Ferrate Films Grown by Pulsed-Laser Deposition: S. Chakraverty,A. Ohtomo,M. Okude,K. Ueno,M. Kawasaki, (2010) American Chemical Society, 10: 1725-1729. DOI: 10.1021/cg901355c

  43.  Coercivity of magnetic nanoparticles: a stochastic model: S. Chakraverty,M. Bandyopadhyay, (2008) Journal of Physics: Condensed Matter Physics, 20: 219803. DOI: 10.1088/0953-8984/20/21/219803

  44. Stochastic Modeling of Coercivity- A Measure of Non- equilibrium State: S. Chakraverty,M. Bandyopadhyay, (2007) Journal of Physics: Condensed Matter Physics, 19: 216203. DOI: 10.1088/0953-8984/19/21/216201

  45. Magnetic Coding in a System of Nano-magnetic Particles: S. Chakraverty,A. Frydman,B. Ghosh,S. Kumar, (2006) Applied Physics letters, 88: 42501. DOI: 10.1063/1.2166203

  46. Memory in a magnetic nanoparticle system: Polydispersity and interaction Effects: S. Chakraverty,M. Bandyopadhyay,S. Chatterjee,S. Dattagupta,A.Frydman,S. Sengupta,P. A. Sreeram, (2005) Physical Review B, 71: 054401(8). DOI: 10.1103/PhysRevB.71.054401

  47. Positron annihilation studies of some anomalous features of NiFe2O4 nanocrystals grown in SiO2: S. Chakraverty,S. Mitra,K. Mandal,P. M. G. Nambissan,S. Chattopadhyay, (2005) Physical Review B, 71: 024115(8). DOI: 10.1103/PhysRevB.71.024115

  48. Magnetic Properties of NiFe2O4 Nanoparticles in SiO2 Matrix: S. Chakraverty,K. Mandal,S. Mitra,S. Chattopadhyay,S. Kumar, (2004) Japenese Journal of Applied Physics, 43: 7782. DOI: 10.1143/JJAP.43.7782

  1. Nanomaterials: Synthesis, Properties and Applications: S. Chakraverty,K. Mandal,S. Mitra,S. Chattopadhyay,S. Kumar, (2012) Journal ofMaterials and Manufacturing Process, 27: 1145. DOI: 10.1080/10426914.2012.689458

  1. Spontaneous atomic ordering and magnetism in epitaxially stabilized double perovskites: A. Ohtomo,S. Chakraverty,H. Mashiko,T. Oshima,M. Kawasaki, (2013) MRS Proceedings, 1454: 3 to 13.

Fundings

  • Realization of a prototype spin valve based on perovskite oxide superlattice Sr2FeMoO6-LaBO3 3Years, DAE-BRNS
    Funding Amount: ~30L
    PI: Dr. Suvankar Chakraverty
  • Magneto Opto Electronic properties of perovskite oxide interface with strong spin orbit coupling 3Years, DST Nano ission
    Funding Amount: ~8.5Cr
    PI: Dr. Suvankar Chakraverty

  • 2006

    Ph.D. in material physics

    S.N. Bose National Centre for Basic Sciences

  • 2000

    M.Sc (Physics)

    University of Calcutta, India

  • 1998

    B.Sc (Physics Hons.)

    University of Calcutta, India

  • Research Scientist (Assistant professor equivalent):The Institute of Physical and Chemical Research (RIKEN), Wako, Japan (April 2010 to April 2013 )

  • JSPS-GCOE Postdoctoral Fellow:Tohoku University, Japan (April 2008 to May 2010 )

  • Postdoctoral Researcher:Indian Association for the Cultivation of Science, Kolkata, India. (March 2007 to November 2008 )

  • Visiting Research:Dept. of Engineering Sciences, The Ångström Laboratory, Uppsala University, Uppsala, Sweden (April 2007 to April 2008 )

Awards & Honours

  • The Swedish Foundation for International Cooperation in Research and Higher education had awarded a three month fellowship to work at Uppsala University (Sweden) with Prof. Per Nordblad on Magnetic Tunnel Junctionand Exchange Bias.

  • Kinkenwakate 2008, Japan, best presentation award.

  • 16th International Workshop on Oxide Electronics Tarragona Spain, best presentation award. 2009.

  • Marubun research grant award 2010, Tokyo Japan.


Professional Recognitions