(Associate Professor, Scientist-E, Head of the Unit)
Design new materials in form of thin films, interface or super-lattice for magneto-opto-electronic devices and understanding their physical properties.
A. Designing New materials in thin film or interface form using laser molecular beam epitaxy.
B. 2-Dimensional electron gas at oxide interface.
C. Strong spin orbit couple system: Rashba effect.
D. Magnetic Skyrmions.
E. Strain induced artificial physical properties.
F Super-lattice for integrated or emergent physical properties.
G. Double perovskite oxides for half metallic antiferromagnets.
Neha
Wadehra et. al. paper got published in
Nature Communication titled "Planar Hall effect and
anisotropic magnetoresistance in polar-polar interface of LaVO_3-KTaO_3 with
strong spin-orbit coupling" in Feb. , 2020. They reported a novel
conducting interface by placing KTO with another insulator, LaVO_3 and reported
planar Hall effect (PHE) and anisotropic magnetoresistance (AMR) measurements. This interface exhibits a signature of strong spin orbit coupling. The
experimental observations of two fold AMR and PHE at low magnetic fields (B) is
similar to those obtained for topological systems and can be intuitively
understood using a phenomenological theory for a Rashba spin-split system.
Click
the link for more detail: https://www.nature.com/articles/s41467-020-14689-z
DST acknowledged the work by Dr.
Suvankar Chakraverty and his group in an article titled by Mobile 2D
electron gas at oxide interfaces by INST is a promising candidate in modern
electronic devices. The research by Dr. Suvankar Chakraverty and his group
from INST has been carried out through world-class capabilities to produce
highest-quality oxide thin films, interface and heterostructures and novel
measurements of emergent phenomena arising from quantum phenomenon coupled with
the theory of relativity: Rashba Effects (momentum dependent splitting of
spin-bands in an electronic system) in 2d-electron gas at the interface of two
insulating oxide layers, where the magnetic state of an electron (q-bit) can be
control using electric field. It exhibits a perfect blending of the theory of
relativity and quantum mechanical phenomena.The study has important
consequences for not just basic physics but also applications to spintronics,
memory devices, dissipationless electronics and quantum devices.
Click the link for more detail: https://dst.gov.in/mobile-2d-electron-gas-oxide-interfaces-inst-promising-candidate-modern-electronic-devices
Email: bibek.ph20258@inst.ac.in
Reg. No.: PH20258
Email: manish.ph18210@inst.ac.in
Reg. No.: PH18210
Email: saveena.ph16227@inst.ac.in
Reg. No.: PH16227, UGC-JRF
Email: anamika.ph18201@inst.ac.in
Reg. No.: PH18201
Email: ripudaman.ph19301007@inst.ac.in
Reg. No.: PH19301007
Email: sharmisthasamota2050@gmail.com
Reg. No.: 2018-EZ-112; CSIR- JRF; Co-Supervisor Prof. Anupama Sharma (Panjab Uni. , CHD)
Email: anshu.ph19221@inst.ac.in
Reg. No.: PH19221, UGC-JRF
Email: harsha.ph19238@inst.ac.in
Reg. No.: PH19238
Email: neha.ph14219@inst.ac.in
Reg. No.: PH14219; Thesis submitted, PostDoc offered at Cornell University
Email: royalsruchi@gmail.com
Reg. No.: PH14226; Thesis submitted, PostDoc offered at NIMS Japan
Email: nand.rp151621@inst.ac.in
Reg. No.: RP151621; Co-supervisor Prof. Sanjeev Kumar(PEC, CHD)
Photodynamics Study of KTaO3-Based Conducting Interfaces: Saveena Goyal,Ruchi Tomar ,Suvamkar Chakraverty, (2021) ACS Applied Electronic Materials, . DOI: 10.1021/acsaelm.0c01035
Observation of Shubnikov–de Haas Oscillations, Planar Hall Effect, and Anisotropic Magnetoresistance at the Conducting Interface of EuO–KTaO3: Nand Kumar, Neha Wadehra, Ruchi Tomar, Shama, Sanjeev Kumar, Yogesh Singh, Sushanta Dattagupta,Suvankar Chakraverty, (2020) Advance Quantum Technologies, 2000081(1-7). DOI: 10.1002/qute.202000081
Tuning the electrical state of 2DEG at LaVO3-KTaO3 interface: effect of light and electrostatic gate: Saveena Goyal, Neha Wadehra, Suvankar Chakraverty, (2020) Advanced Materials Interfaces, 000: 2000646. DOI: https://doi.org/10.1002/admi.202000646
Persistent photoconductivity at LaVO3-SrTiO3 interface: Saveena Goyal,Ajit Singh,Ruchi Tomar,Ripudaman kaur,Chandan Bera,Suvankar Chakraverty, (2020) Solid State Communications, 113930. DOI: https://doi.org/10.1016/j.ssc.2020.113930
Planar Hall effect and anisotropic magnetoresistance in a polar-polar interface of LaVO3-KTaO3 with strong spin-orbit coupling: N. Wadehra,R. Tomar,R. K. Gopal,Y. Singh,S. Dattagupta, S. Chakraverty, (2020) Nature communication, 11: 874(1-7). DOI: 10.1038/s41467-020-14689-z
Nano-electrical domain writing for oxide electronics: N. Wadehra, N. Kumar,S. Mishra,R. Tomar,S. Chakraverty, (2020) Applied Surface Science, 509: 145214. DOI: 10.1016/j.apsusc.2019.145214
Design of process for stabilization of La2NiMnO6 nanorods and their magnetic properties: V. M. Gaikwad,K. K. Yadav,Sunain,S. Chakraverty,S. E. Lofland,K.V. Ramanujachary,S. T. Nishanthi,A. K. Ganguli,Menaka Jha, (2019) Journal of Magnetism and Magnetic Materials, 492: 165652. DOI: 10.1016/j.jmmm.2019.165652
Multiple helimagnetic phases in triclinic CuSeO3: Ruchi Tomar,Sonali Kakkar,Saveena Goyal,M. Manolata Devi,Chandan Bera,S. Chakraverty, (2019) Journal of Magnetism and Magnetic Materials, 497: 165945. DOI: 10.1016/j.jmmm.2019.165945
Conducting LaVO3/SrTiO3 Interface: Is Cationic Stoichiometry Mandatory?: R. Tomar,R. M. Varma,N. Kumar, D. D. Sarma, D. Maryenko,S. Chakraverty, (2019) Advaned Material Interfaces, 1900941(1-6). DOI: 10.1002/admi.201900941
Defects, conductivity and photoconductivity in KTaO3: R. Tomar,N. Wadehra,S. Kumar,A. Venkatesan,D. D. Sarma,D. Maryenko,S. Chakraverty\, (2019) Journal of Applied Physics, 126: 35303. DOI: 10.1063/1.5099546
Electrostatic memory in KTaO3: N. Wadehra,S. Chakraverty, (2019) Applied Physics Letters, 114: 163103(1-5). DOI: 10.1063/1.5087035
The limit to realize an isolated magnetic single skyrmionic state: M. M. Devi,W. Koshibae,G. Sharma,R. Tomar,V. M. Gaikwad,R. M. Varma,M. N. Nair,M. Jha,D. D. Sarma,R. Chatterjee,A. K. Ganguli,S. Chakraverty, (2019) Journal of Materials Chemistry C, . DOI: 10.1039/c8tc03968b
Observation of planar Hall effect in Type-II Dirac semimetal PtTe2: A. Vashist,R. K. Singh,N. Wadehra,S. Chakraverty,Y Singh, (2018) Arxiv, . DOI: arXiv:1812.06485
Type-II Dirac semimetal candidates ATe2 (A = Pt, Pd): A de Haas-van Alphen study: Amit,R. K. Singh,N. Wadehra,S. Chakraverty,Y. Singh, (2018) Physical Review Materials, 2: 114202. DOI: 10.1103/PhysRevMaterials.2.114202
New low temperature process for stabilization of nanostructured La2NiMnO6 and their magnetic properties: V. M. Gaikwad,K. K. Yadav,S. E. Lofland,K. V. Ramanujachary,S. Chakraverty,A. K. Ganguli,M. Jha, (2018) Journal of Magnetism and Magnetic Materials, 471: 8 to 13. DOI: 10.1016/j.jmmm.2018.08.081
Low field manifestation of spiral ordering in sheet like BiFeO3 nanostructures: R. Tomar,N. Wadehra,V. M. Gaikwad,S. Chakraverty, (2018) AIP Advances, 8: 85306. DOI: 10.1063/1.5040710
Influence of Fe substitution on structural and magnetic features of BiMn2O5 nanostructures: V. M. Gaikwad,S. Goyal,P. Yanda,A. Sundaresan,S. Chakraverty,A. K. Ganguli, (2018) Journal of Magnetism and Magnetic Materials, 452: 120. DOI: 10.1016/j.jmmm.2017.11.101
Growth of highly crystalline and large scale monolayer MoS2 by CVD: The role of substrate position: Nand Kumar, Ruchi Tomar, Neha Wadehra, M Manolata Devi,Bhanu Prakash,S. Chakraverty, (2018) Crystal Research and Technology, 1800002: 53. DOI: 10.1002/crat.201800002
Efficient synthesis and characterization of Cu2OSeO3 nanoparticles via hydrothermal route: M M Devi, AK Ganguli, S Chakraverty,M. Jha, (2017) Materials Research Express, 4: 115007. DOI: 10.1088/2053-1591/aa9448
Electronic structure modification of the KTaO3 single-crystal surface by Ar+ bombardment: N. Wadehra,R. Tomar,S. Halder,M. Sharma,I. Singh,N. Jena,B. Prakash,A. D. Sarkar,C. Bera,A. Venkatesan,S. Chakraverty, (2017) Physical Review B, 96: 115423(6). DOI: 10.1103/PhysRevB.96.115423
Electrical domain writing and nanoscale potential modulation on LaVO3/SrTiO3: M. Balal,S. Sanwlani,N. Wadehra,S. Chakraverty,G. Sheet, (2017) Applied Physcis Letters, 110: 261604 . DOI: 10.1063/1.4990963
Realization of single terminated surface of perovskite oxide single crystals and their band profile (LaAlO3)0.3(Sr2AlTaO6)0.7, SrTiO3 and KTaO3 case study: Ruchi Tomar, Neha Wadehra, Vaishali Budhiraja,Bhanu Prakash,S Chakraverty, (2017) Applied Surface Science, 427: 861-866. DOI: 10.1016/j.apsusc.2017.08.101
High anisotropic thermoelectric effect in palladium phosphide sulphide: P. Kaur, S. Chakraverty, A. K. Ganguli,C. Bera, (2017) Phys. Status Solidi B, . DOI: 10.1002/pssb.201700021
Biocompatible ferrite nanoparticles for hyperthermia: effect of polydispersity, anisotropy energy and inter-particle interaction Mater: N. Wadehra,R. Gupta,B. Prakash,D. Sharma, S. Chakraverty, (2017) Material Research Express, 4: 25037. DOI: 10.1088/2053-1591/aa5d93
Photoinduced demagnetization and insulator-to-metal transition in ferromagnetic insulating BaFeO3 thin films: T. Tsuyama,S. Chakraverty,S. Macke,N. Pontius,C. Schüßler-Langeheine,H. Y. Hwang,Y. Tokura,H. Wadati, (2016) Physical Review Letters, 116: 256402(5). DOI: 10.1103/PhysRevLett.116.256402
Graphene/Nanoporous-Silica Heterostructure based Hydrophobic Antireflective Coating: S. De,J. Singh,B. Prakash,S. Chakraverty, K. Ghosh, (2016) Materials Today Communications, 8: 41-45. DOI: 10.1016/j.mtcomm.2016.04.016
Realization of single-terminated nano step-and terrace-like surface of SrTiO3 single crystals: Bhanu Prakash,S Chakraverty, (2015) Current Science, 108: . DOI: 10.1016/j.ssc.2015.04.009
Realization of atomically flat steps and terraces like surface of SrTiO3 (001) single crystal by hot water etching and high temperature annealing: Bhanu Prakash,S Chakraverty, (2015) Solid State Communications, 213-214: 28-30. DOI: 10.1016/j.ssc.2015.04.009
X-ray spectroscopic study of BaFeO3 thin films: An Fe4+ ferromagnetic insulator: T. Tsuyama,T. Matsuda,S. Chakraverty,J. Okamoto, E. Ikenaga,A. Tanaka,T. Mizokawa,H. Y. Hwang,Y. Tokura,H. Wadati, (2015) Physical Review B, 91: 115101. DOI: 10.1103/PhysRevB.91.115101
In-plane terahertz response of thin film Sr2RuO4: Y. Takahashi,S. Chakraverty,M. Kawasaki,H. Y. Hwang,Y. Tokura, (2014) Physical Review B, 89: 165116. DOI: 10.1103/PhysRevB.89.165116
Multiple helimagnetic phases and topological Hall effect in epitaxial thin films of pristine and Co-doped SrFeO3 : S. Chakraverty,T. Matsuda,H. Wadati,J. Okamoto,Y. Yamasaki,H. Nakao,Y. Murakami,S. Ishiwata,M. Kawasaki,Y. Taguchi,Y. Tokura,H. Y. Hwang, (2013) Physical Review B, 88: 220405. DOI: 10.1103/PhysRevB.88.220405
BaFeO3 cubic single crystalline thin film: A ferromagnetic insulator: S. Chakraverty,T. Matsuda,N. Ogawa,H. Wadati,E. Ikenaga,M. Kawasaki,Y. Tokura,H. Y. Hwang, (2013) Applied Physics Letters, 103: 142416 . DOI: 10.1063/1.4824210
Atomic scale strucrutre and electronic proeperty of La2FeCrO6/SrTiO3 interface: S. Lv,M. Saito,Z. Wang,C. Chen, S. Chakraverty,M. Kawasaki,Y. Ikuhara, (2013) Journal of Applied Physics, 114: 113705. DOI: 10.1063/1.4821795
Engineered spin-valve type magnetoresistance in Fe3O4-CoFe2O4 core-shell nanoparticles : P. A. Kumar, S. Ray,S. Chakraverty,D. D. Sarma, (2013) Applied Physics letters, 103: 102406. DOI: 10.1063/1.4819956
Spontaneous B-site order and metallic ferrimagnetism in LaSrVMoO6 grown by pulsed laser deposition : S. Chakraverty,X. Z. Yu,M .Kawasaki,Y.Tokura,H. Y. Hwang, (2013) Applied Physics Letters, 102: 222406. DOI: 10.1063/1.4809937
Atomistic geometry and bonding characteristics at the Sr2FeTaO6/SrTiO3 interface: S. Lv,M. Saito,Z. Wang,S. Chakraverty,M. Kawasaki,Y. Ikuhara, (2013) Applied Physics Letters, 102: 221602. DOI: 10.1063/1.4809536
Spontaneous atomic ordering and magnetism in epitaxially stabilized double perovskites: A. Ohtomo,S. Chakraverty,H. Mashiko,T. Oshima,M. Kawasaki, (2013) Journal of Material Research, 28: 689-695. DOI: 10.1557/jmr.2012.438
Epitaxially Stabilized EuMoO3: A New Itinerant Ferromagne: Y. Kozuka,H. Seki,T. C. Fujita,S. Chakraverty,K. Yoshimatsu,H. Kumigashira,M. Oshima,M. S. Bahramy,R. Arita,M. Kawasaki, (2012) American Chemical Society, 24: 3746. DOI: 10.1021/cm302231k
Magnetoresistance and electroresistance effect in Fe3O4 nanoparticle system: P. A. Kumar,S. Ray,S. Chakraverty,D. D. Sarma, (2012) Journal of Experimental Nanoscience, 391-397. DOI: 10.1080/17458080.2012.662657
Magnetic properties of Sr2FeTaO6 double perovskite epitaxially grown by pulsed-laser deposition: S. Chakraverty,M. Saito,S. Tsukimoto,Y. Ikuhara,A. Ohtomo,M. Kawasaki, (2011) Applied Physics letters, 99: 223101. DOI: 10.1063/1.3663214
Magnetic and electronic properties of ordered double-perovskite La2VMnO6 thin films: S. Chakraverty,K. Yoshimatsu,Y. Kozuka,H. Kumigashira,M. Oshima,T. Makino,A. Ohtomo,M. Kawasaki, (2011) Physical Review B, 84: 132411(4). DOI: 10.1103/PhysRevB.84.132411
Ferrimagnetism and spontaneous ordering of transition metals in double perovskite La2CrFeO6 films: S. Chakraverty,A. Ohtomo,D. Okuyama,M. Saito,M. Okude,R. Kumai,T. Arima,Y. Tokura,S. Tsukimoto,Y. Ikuhara,M. Kawasaki, (2011) Physical Review B, 84: 064436(5). DOI: 10.1103/PhysRevB.84.064436
Controlled B-site ordering in Sr2CrReO6 double perovskite films by using pulsed laser interval deposition: S. Chakraverty,A. Ohtomo,M. Kawasaki, (2010) Applied Physics letters, 97: 243107. DOI: 10.1063/1.3525578
Epitaxial Structure of (001) and (111)-Oriented Perovskite Ferrate Films Grown by Pulsed-Laser Deposition: S. Chakraverty,A. Ohtomo,M. Okude,K. Ueno,M. Kawasaki, (2010) American Chemical Society, 10: 1725-1729. DOI: 10.1021/cg901355c
Coercivity of magnetic nanoparticles: a stochastic model: S. Chakraverty,M. Bandyopadhyay, (2008) Journal of Physics: Condensed Matter Physics, 20: 219803. DOI: 10.1088/0953-8984/20/21/219803
Stochastic Modeling of Coercivity- A Measure of Non- equilibrium State: S. Chakraverty,M. Bandyopadhyay, (2007) Journal of Physics: Condensed Matter Physics, 19: 216203. DOI: 10.1088/0953-8984/19/21/216201
Magnetic Coding in a System of Nano-magnetic Particles: S. Chakraverty,A. Frydman,B. Ghosh,S. Kumar, (2006) Applied Physics letters, 88: 42501. DOI: 10.1063/1.2166203
Memory in a magnetic nanoparticle system: Polydispersity and interaction Effects: S. Chakraverty,M. Bandyopadhyay,S. Chatterjee,S. Dattagupta,A.Frydman,S. Sengupta,P. A. Sreeram, (2005) Physical Review B, 71: 054401(8). DOI: 10.1103/PhysRevB.71.054401
Positron annihilation studies of some anomalous features of NiFe2O4 nanocrystals grown in SiO2: S. Chakraverty,S. Mitra,K. Mandal,P. M. G. Nambissan,S. Chattopadhyay, (2005) Physical Review B, 71: 024115(8). DOI: 10.1103/PhysRevB.71.024115
Magnetic Properties of NiFe2O4 Nanoparticles in SiO2 Matrix: S. Chakraverty,K. Mandal,S. Mitra,S. Chattopadhyay,S. Kumar, (2004) Japenese Journal of Applied Physics, 43: 7782. DOI: 10.1143/JJAP.43.7782
Nanomaterials: Synthesis, Properties and Applications: S. Chakraverty,K. Mandal,S. Mitra,S. Chattopadhyay,S. Kumar, (2012) Journal ofMaterials and Manufacturing Process, 27: 1145. DOI: 10.1080/10426914.2012.689458
Spontaneous atomic ordering and magnetism in epitaxially stabilized double perovskites: A. Ohtomo,S. Chakraverty,H. Mashiko,T. Oshima,M. Kawasaki, (2013) MRS Proceedings, 1454: 3 to 13.
S.N. Bose National Centre for Basic Sciences
University of Calcutta, India
University of Calcutta, India
Research Scientist (Assistant professor equivalent):The Institute of Physical and Chemical Research (RIKEN), Wako, Japan (April 2010 to April 2013 )
JSPS-GCOE Postdoctoral Fellow:Tohoku University, Japan (April 2008 to May 2010 )
Postdoctoral Researcher:Indian Association for the Cultivation of Science, Kolkata, India. (March 2007 to November 2008 )
Visiting Research:Dept. of Engineering Sciences, The Ångström Laboratory, Uppsala University, Uppsala, Sweden (April 2007 to April 2008 )
The Swedish Foundation for International Cooperation in Research and Higher education had awarded a three month fellowship to work at Uppsala University (Sweden) with Prof. Per Nordblad on Magnetic Tunnel Junctionand Exchange Bias.
Kinkenwakate 2008, Japan, best presentation award.
16th International Workshop on Oxide Electronics Tarragona Spain, best presentation award. 2009.
Marubun research grant award 2010, Tokyo Japan.
© Copyright Institute of Nano Science and Technology 2014 - 2021 All Rights Reserved With Institute of Nano Science and Technology