Faculty Directory

Dr. Suvankar Chakraverty

(Associate Professor, Scientist-E)

Designing (and understanding the physical properties) of new materials with integrated functionalities for spin-electronics (spintronics / skyrmionics) devices in the form of thin films and interfaces with atomic scale control and monitoring the growth process using laser molecular beam epitaxy method.  

CONTACT INFORMATION :

Research Interest

  • Design new materials in form of thin films, interface or super-lattice for magneto-opto-electronic devices and understanding their physical properties.

    A. Designing New materials in thin film or interface form using laser molecular beam epitaxy.

    B. 2-Dimensional electron gas at oxide interface.

    C. Strong spin orbit couple system: Rashba effect.

    D. Magnetic Skyrmions.

    E. Strain induced artificial physical properties.

    F Super-lattice for integrated or emergent physical properties.

    G. Double perovskite oxides for half metallic antiferromagnets.

Research Highlights

  • Ruchi Tomar et. al. studied the origin of the conductivity at the interface of two insulating perovskite oxides which is a matter of intensive studies.The conductivity generated at the interface of insulating LaVO3(LVO) and SrTiO3 (STO) is explained in terms of polar catastrophe in the paper "Conducting LaVO_3/SrTiO_3 interface: Is cationic stoichiometry mandatory?"  Here, the authors grown LVO films on (001) TiO2terminated STO substrate employing pulsed laser deposition technique and demonstrate a transition from conducting to insulating interface by changing the Lastoichiometry by only 1%, whereby such transition takes place for Ladeficient films. The effect of cation (non) stoichiometry of LVO film on both carrier density and mobility is studied and compared with previously reported LaAlO3–STO interface.                                                                                       
    Click the empty space at the right for more details: https://doi.org/10.1002/admi.201900941
  • Neha Wadehra from Dr. Suvankar Chakraverty's group presented the creation of artificial electrical domains on the conducting surface of KTaO3 (KTO) having strong Spin orbit coupling. In this work, a conductive atomic force microscopy tip has been used to induce extremely small electrically active charge domains on the surface of KTO. The versatility of creating such nano domains is that the features can be written and erased with nanometer scale precision. The written signal (phase difference between the written and unwritten regions) on KTO has turned out to be much higher than that on other reported perovskite oxides. Kelvin probe force microscopy measurements are performed to probe the surface potential and work function changes in the regions of nano-electrical domains. Magnetic force microscopy measurements suggest generation of a magnetic field when electrostatic charge is written in a dipolar configuration which can be utilized in future nano-electric devices.
    Click the empty space at the right for more details:  https://doi.org/10.1063/1.5087035
     
     

     

  • Neha Wadehra et. al. paper got published in Nature Communication titled "Planar Hall effect and anisotropic magnetoresistance in polar-polar interface of LaVO_3-KTaO_3 with strong spin-orbit coupling" in Feb. , 2020. They reported a novel conducting interface by placing KTO with another insulator, LaVO_3 and reported planar Hall effect (PHE) and anisotropic magnetoresistance (AMR) measurements. This interface exhibits a signature of strong spin orbit coupling. The experimental observations of two fold AMR and PHE at low magnetic fields (B) is similar to those obtained for topological systems and can be intuitively understood using a phenomenological theory for a Rashba spin-split system. 

    Click the link for more detail:  https://www.nature.com/articles/s41467-020-14689-z



  • DST acknowledged the work by  Dr. Suvankar Chakraverty and his group in an article titled by Mobile 2D electron gas at oxide interfaces by INST is a promising candidate in modern electronic devices. The research by Dr. Suvankar Chakraverty and his group from INST has been carried out through world-class capabilities to produce highest-quality oxide thin films, interface and heterostructures and novel measurements of emergent phenomena arising from quantum phenomenon coupled with the theory of relativity:  Rashba Effects (momentum dependent splitting of spin-bands in an electronic system) in 2d-electron gas at the interface of two insulating oxide layers, where the magnetic state of an electron (q-bit) can be control using electric field. It exhibits a perfect blending of the theory of relativity and quantum mechanical phenomena.The study has important consequences for not just basic physics but also applications to spintronics, memory devices, dissipationless electronics and quantum devices.
    Click the link for more detail: 
    https://dst.gov.in/mobile-2d-electron-gas-oxide-interfaces-inst-promising-candidate-modern-electronic-devices

     

PhD Students

  • Ripudaman Kaur

    Email: ripudaman.ph19301007@inst.ac.in

    Reg. No.: PH19301007

    Working Since Aug, 2019
  • Anamika Kumari

    Email: anamika.ph18201@inst.ac.in

    Reg. No.: PH18201

    Working Since Aug, 2018
  • MR. BIBEK RANJAN SATAPATHY

    Email: bibek.ph20258@inst.ac.in

    Reg. No.: PH20258

    Working Since Jan, 2021
  • Mr. Manish

    Email: manish.ph18210@inst.ac.in

    Reg. No.: PH18210

    Working Since Aug, 2018
  • Sharmistha

    Email: sharmisthasamota2050@gmail.com

    Reg. No.: 2018-EZ-112; CSIR- JRF; Co-Supervisor Prof. Anupama Sharma (Panjab Uni. , CHD)

    Working Since Aug, 2018
  • Ms. Anshu Gupta

    Email: anshu.ph19221@inst.ac.in

    Reg. No.: PH19221, UGC-JRF

    Working Since Aug, 2019
  • Ms. Harsha

    Email: harsha.ph19238@inst.ac.in

    Reg. No.: PH19238

    Working Since Jan, 2020

PhD Students

  • Ms. Saveena Goyal

    Email: saveena.ph16227@inst.ac.in

    Reg. No.: PH16227, UGC-JRF

  • Ms. Neha Wadehra

    Email: neha.ph14219@inst.ac.in

    Reg. No.: PH14219; Thesis submitted, PostDoc offered at Cornell University

  • Ms. Ruchi Tomar Km

    Email: royalsruchi@gmail.com

    Reg. No.: PH14226; Thesis submitted, PostDoc offered at NIMS Japan


Project - JRF/SRF

  • Nand Kumar

    Email: nand.rp151621@inst.ac.in

    Reg. No.: RP151621; Co-supervisor Prof. Sanjeev Kumar(PEC, CHD)


  1. Carbon dot nanosensors for ultra-low level, rapid assay of mercury ions synthesized from an aquatic weed, Typha angustata Bory (Patera): Sharmistha Samota, PreetiTewatia, ReetuRani, SuvankarChakraverty, AnupamaKaushik, (2022) Diamond and Related Materials, 130: 109433. DOI: 10.1016/j.diamond.2022.109433

  2. Possible Signatures of Chiral Anomaly in the Magnetoresistance of a Quasi-2-Dimensional Electron Gas at the Interface of LaVO3 and KTaO3: Harsha Silotia, Anamika Kumari, Anshu Gupta, Joydip De, Shantanu Kumar Pal, Ruchi Tomar, Suvankar Chakraverty, (2022) Advance Electronic Mater, 2200195. DOI: 10.1002/aelm.202200195

  3. Light-enhanced gating effect at the interface of oxide heterostructure.: Neha Wadehra, Ruchi Tomar, Y. Yokoyama, A. Yasui, E. Ikenaga, H. Wadati, D. Maryenko, Suvankar Chakraverty, (2022) Journal of Physics D: Applied Physics, 55: 255301. DOI: 10.1088/1361-6463/ac5ef0

  4. KTaO3—The New Kid on the Spintronics Block: Anshu Gupta,Harsha Silotia,Anamika Kumari,Manish Dumen,Saveena Goyal,Ruchi Tomar,Neha Wadehra,Pushan Ayyub,Suvankar Chakraverty, (2021) Advanced Materials, 2106481. DOI: 10.1002/adma.202106481

  5. Biosensors for simplistic detection of pathogenic bacteria: A review with special focus on field-effect transistors: Sharmistha Samota,Reetu Rani,Suvankar Chakraverty,Anupama Kaushik, (2021) Materials Science in Semiconductor Processing, 141: 106404. DOI: 10.1016/j.mssp.2021.106404

  6. Bulk Rashba Spin Splitting and Dirac Surface State in p-Type (Bi0.9Sb0.1)2Se3 Single Crystal: Pradeepta Kumar Ghose, Subhadeep Bandyopadhyay, Tamal Kumar Dalui, Jochi Tseng, Jayjit Kumar Dey, Ruchi Tomar, Suvankar Chakraverty, Subham Majumdar, Indra Dasgupta, Saurav Giri, (2021) Phys. Status Solidi RRL, 16: 2100494. DOI: 10.1002/pssr.202100494

  7. Silicon nanowire–Ta2O5–NGQD heterostructure: an efficient photocathode for photoelectrochemical hydrogen evolution†: Sk Riyajuddin,Jenifar Sultana,Shumile Ahmed Siddiqui,Sushil Kumar,Damini Badhwar,Shyam Sunar Yadav,Saveena Goyal,Ananth Venkatesan,Suvankar Chakraverty,Kaushik Ghosh, (2021) The Royal Society of Chemistry, 6: 197-208. DOI: 10.1039/d1se01280k

  8. Unique Signatures of Rashba Effect in Angle Resolved Magnetoresistance: Anshu Gupta,Deepak S. Kathyat,Arnob Mukherjee,Anamika Kumari,Ruchi Tomar,Yogesh Singh,Sanjeev Kumar,Suvankar Chakraverty, (2021) Advance Quantum Technologies, . DOI: https://doi.org/10.1002/qute.202100105

  9. Emergent phenomena at interfaces of KTaO3: Neha Wadehra,Suvankar Chakraverty, (2021) Bull Mater Sci, 44: 269 (1-8). DOI: 10.1007/s12034-021-02564-6

  10. Probing conducting interfaces by combined photoluminescence and transport measurements: LaVO3 and SrTiO3 interface as a case study: Anamika Kumari,Joydip De,Sushanta Dattagupta,Hirendra N. Ghosh,Santanu Kumar Pal,S. Chakraverty, (2021) Physical Review B, 104: L081111(1-7). DOI: 10.1103/PhysRevB.104.L081111

  11. Photoconductivity of the EuO−KTO Interface: Effect of Intrinsic Carrier Density and Temperature: Manish Dumen,Ajit Singh,Saveena Goyal,Chandan Bera,S. Chakraverty, (2021) The Journal of Physical Chemistry C, 125: 15510−15515. DOI: 10.1021/acs.jpcc.1c02550

  12. A Case Study to Address: “Is Your Pulsed Laser Deposition Chamber Clean?”: Manish Dumen, Ripudaman Kaur, Saveena Goyal, Ruchi Tomar, Neha Wadehra, and Suvankar Chakraverty*, (2021) CRYSTAL Research & Technology, 2000186 (1 of 8). DOI: 10.1002/crat.202000186

  13. Effect of manganese doping on the hyperthermic profile of ferrite nanoparticles using response surface methodology: Ruby Gupta, Ruchi Tomar,Suvankar Chakraverty,Deepika Sharma, (2021) RSC Advances, 11: 16942-16954. DOI: 10.1039/D1RA02376D

  14. Anisotropic magnetoresistance and planar Hall effect in (001) and (111) LaVO3 / SrTiO3 heterostructures: Ruchi Tomar, Sonali Kakkar, Chandan Bera, and S. Chakraverty, (2021) PHYSICAL REVIEW B, 103: . DOI: 10.1103/PhysRevB.103.115407

  15. Magnetic order and surface state gap in (Sb0.95Cr0.05)2 Te3: T. K. Dalui, P. K. Ghose, S. Majumdar, S. K. Mahatha , F. Diekmann, K. Rossnagel , R. Tomar, S. Chakraverty, A. Berlie and S. Giri, (2021) PHYSICAL REVIEW B, 103: 064428(1-9). DOI: 10.1103/PhysRevB.103.064428

  16. B-Site Stoichiometry Control of the Magnetotransport Properties of Epitaxial Sr2FeMoO6 Thin Film: Nand Kumar, Raveena Gupta, Ripudaman Kaur, Daichi Oka, Sonali Kakkar, Sanjeev Kumar, Surendra Singh, Tomoteru Fukumura, Chandan Bera,Suvankar Chakraverty, (2021) ACS Applied Electronic Materials, 3: 597–604. DOI: 10.1021/acsaelm.0c00933

  17. Photodynamics Study of KTaO3-Based Conducting Interfaces: Saveena goyal, Ruchi Tomar, Suvankar Chakraverty, (2021) ACS Applied Electronic Materials, 3: 905–911. DOI: 10.1021/acsaelm.0c01035

  18. Observation of Shubnikov–de Haas Oscillations, Planar Hall Effect, and Anisotropic Magnetoresistance at the Conducting Interface of EuO–KTaO3: Nand Kumar, Neha Wadehra, Ruchi Tomar, Shama, Sanjeev Kumar, Yogesh Singh, Sushanta Dattagupta,Suvankar Chakraverty, (2020) Advance Quantum Technologies, 2000081(1-7). DOI: 10.1002/qute.202000081

  19. Tuning the electrical state of 2DEG at LaVO3-KTaO3 interface: effect of light and electrostatic gate: Saveena Goyal, Neha Wadehra, Suvankar Chakraverty, (2020) Advanced Materials Interfaces, 000: 2000646. DOI: https://doi.org/10.1002/admi.202000646

  20. Persistent photoconductivity at LaVO3-SrTiO3 interface: Saveena Goyal,Ajit Singh,Ruchi Tomar,Ripudaman kaur,Chandan Bera,Suvankar Chakraverty, (2020) Solid State Communications, 113930. DOI: https://doi.org/10.1016/j.ssc.2020.113930

  21. Planar Hall effect and anisotropic magnetoresistance in a polar-polar interface of LaVO3-KTaO3 with strong spin-orbit coupling: N. Wadehra,R. Tomar,R. K. Gopal,Y. Singh,S. Dattagupta, S. Chakraverty, (2020) Nature communication, 11: 874(1-7). DOI: 10.1038/s41467-020-14689-z

  22. Nano-electrical domain writing for oxide electronics: N. Wadehra, N. Kumar,S. Mishra,R. Tomar,S. Chakraverty, (2020) Applied Surface Science, 509: 145214. DOI: 10.1016/j.apsusc.2019.145214

  23. Design of process for stabilization of La2NiMnO6 nanorods and their magnetic properties: V. M. Gaikwad,K. K. Yadav,Sunain,S. Chakraverty,S. E. Lofland,K.V. Ramanujachary,S. T. Nishanthi,A. K. Ganguli,Menaka Jha, (2019) Journal of Magnetism and Magnetic Materials, 492: 165652. DOI: 10.1016/j.jmmm.2019.165652

  24. Multiple helimagnetic phases in triclinic CuSeO3: Ruchi Tomar,Sonali Kakkar,Saveena Goyal,M. Manolata Devi,Chandan Bera,S. Chakraverty, (2019) Journal of Magnetism and Magnetic Materials, 497: 165945. DOI: 10.1016/j.jmmm.2019.165945

  25. Conducting LaVO3/SrTiO3 Interface: Is Cationic Stoichiometry Mandatory?: R. Tomar,R. M. Varma,N. Kumar, D. D. Sarma, D. Maryenko,S. Chakraverty, (2019) Advaned Material Interfaces, 1900941(1-6). DOI: 10.1002/admi.201900941

  26. Defects, conductivity and photoconductivity in KTaO3: R. Tomar,N. Wadehra,S. Kumar,A. Venkatesan,D. D. Sarma,D. Maryenko,S. Chakraverty\, (2019) Journal of Applied Physics, 126: 35303. DOI: 10.1063/1.5099546

  27. Electrostatic memory in KTaO3: N. Wadehra,S. Chakraverty, (2019) Applied Physics Letters, 114: 163103(1-5). DOI: 10.1063/1.5087035

  28. The limit to realize an isolated magnetic single skyrmionic state: M. M. Devi,W. Koshibae,G. Sharma,R. Tomar,V. M. Gaikwad,R. M. Varma,M. N. Nair,M. Jha,D. D. Sarma,R. Chatterjee,A. K. Ganguli,S. Chakraverty, (2019) Journal of Materials Chemistry C, . DOI: 10.1039/c8tc03968b

  29. Observation of planar Hall effect in Type-II Dirac semimetal PtTe2: A. Vashist,R. K. Singh,N. Wadehra,S. Chakraverty,Y Singh, (2018) Arxiv, . DOI: arXiv:1812.06485

  30. Type-II Dirac semimetal candidates ATe2 (A = Pt, Pd): A de Haas-van Alphen study: Amit,R. K. Singh,N. Wadehra,S. Chakraverty,Y. Singh, (2018) Physical Review Materials, 2: 114202. DOI: 10.1103/PhysRevMaterials.2.114202

  31. New low temperature process for stabilization of nanostructured La2NiMnO6 and their magnetic properties: V. M. Gaikwad,K. K. Yadav,S. E. Lofland,K. V. Ramanujachary,S. Chakraverty,A. K. Ganguli,M. Jha, (2018) Journal of Magnetism and Magnetic Materials, 471: 8 to 13. DOI: 10.1016/j.jmmm.2018.08.081

  32. Low field manifestation of spiral ordering in sheet like BiFeO3 nanostructures: R. Tomar,N. Wadehra,V. M. Gaikwad,S. Chakraverty, (2018) AIP Advances, 8: 85306. DOI: 10.1063/1.5040710

  33. Influence of Fe substitution on structural and magnetic features of BiMn2O5 nanostructures: V. M. Gaikwad,S. Goyal,P. Yanda,A. Sundaresan,S. Chakraverty,A. K. Ganguli, (2018) Journal of Magnetism and Magnetic Materials, 452: 120. DOI: 10.1016/j.jmmm.2017.11.101

  34. Growth of highly crystalline and large scale monolayer MoS2 by CVD: The role of substrate position: Nand Kumar, Ruchi Tomar, Neha Wadehra, M Manolata Devi,Bhanu Prakash,S. Chakraverty, (2018) Crystal Research and Technology, 1800002: 53. DOI: 10.1002/crat.201800002

  35. Efficient synthesis and characterization of Cu2OSeO3 nanoparticles via hydrothermal route: M M Devi, AK Ganguli, S Chakraverty,M. Jha, (2017) Materials Research Express, 4: 115007. DOI: 10.1088/2053-1591/aa9448

  36. Electronic structure modification of the KTaO3 single-crystal surface by Ar+ bombardment: N. Wadehra,R. Tomar,S. Halder,M. Sharma,I. Singh,N. Jena,B. Prakash,A. D. Sarkar,C. Bera,A. Venkatesan,S. Chakraverty, (2017) Physical Review B, 96: 115423(6). DOI: 10.1103/PhysRevB.96.115423

  37. Electrical domain writing and nanoscale potential modulation on LaVO3/SrTiO3: M. Balal,S. Sanwlani,N. Wadehra,S. Chakraverty,G. Sheet, (2017) Applied Physcis Letters, 110: 261604 . DOI: 10.1063/1.4990963

  38. Realization of single terminated surface of perovskite oxide single crystals and their band profile (LaAlO3)0.3(Sr2AlTaO6)0.7, SrTiO3 and KTaO3 case study: Ruchi Tomar, Neha Wadehra, Vaishali Budhiraja,Bhanu Prakash,S Chakraverty, (2017) Applied Surface Science, 427: 861-866. DOI: 10.1016/j.apsusc.2017.08.101

  39. High anisotropic thermoelectric effect in palladium phosphide sulphide: P. Kaur, S. Chakraverty, A. K. Ganguli,C. Bera, (2017) Phys. Status Solidi B, . DOI: 10.1002/pssb.201700021

  40.  Biocompatible ferrite nanoparticles for hyperthermia: effect of polydispersity, anisotropy energy and inter-particle interaction Mater: N. Wadehra,R. Gupta,B. Prakash,D. Sharma, S. Chakraverty, (2017) Material Research Express, 4: 25037. DOI: 10.1088/2053-1591/aa5d93

  41. Photoinduced demagnetization and insulator-to-metal transition in ferromagnetic insulating BaFeO3 thin films: T. Tsuyama,S. Chakraverty,S. Macke,N. Pontius,C. Schüßler-Langeheine,H. Y. Hwang,Y. Tokura,H. Wadati, (2016) Physical Review Letters, 116: 256402(5). DOI: 10.1103/PhysRevLett.116.256402

  42. Graphene/Nanoporous-Silica Heterostructure based Hydrophobic Antireflective Coating: S. De,J. Singh,B. Prakash,S. Chakraverty, K. Ghosh, (2016) Materials Today Communications, 8: 41-45. DOI:  10.1016/j.mtcomm.2016.04.016

  43. Realization of single-terminated nano step-and terrace-like surface of SrTiO3 single crystals: Bhanu Prakash,S Chakraverty, (2015) Current Science, 108: . DOI: 10.1016/j.ssc.2015.04.009

  44. Realization of atomically flat steps and terraces like surface of SrTiO3 (001) single crystal by hot water etching and high temperature annealing: Bhanu Prakash,S Chakraverty, (2015) Solid State Communications, 213-214: 28-30. DOI: 10.1016/j.ssc.2015.04.009

  45. X-ray spectroscopic study of BaFeO3 thin films: An Fe4+ ferromagnetic insulator: T. Tsuyama,T. Matsuda,S. Chakraverty,J. Okamoto, E. Ikenaga,A. Tanaka,T. Mizokawa,H. Y. Hwang,Y. Tokura,H. Wadati, (2015) Physical Review B, 91: 115101. DOI: 10.1103/PhysRevB.91.115101

  46. In-plane terahertz response of thin film Sr2RuO4: Y. Takahashi,S. Chakraverty,M. Kawasaki,H. Y. Hwang,Y. Tokura, (2014) Physical Review B, 89: 165116. DOI: 10.1103/PhysRevB.89.165116

  47. Multiple helimagnetic phases and topological Hall effect in epitaxial thin films of pristine and Co-doped SrFeO3 : S. Chakraverty,T. Matsuda,H. Wadati,J. Okamoto,Y. Yamasaki,H. Nakao,Y. Murakami,S. Ishiwata,M. Kawasaki,Y. Taguchi,Y. Tokura,H. Y. Hwang, (2013) Physical Review B, 88: 220405. DOI: 10.1103/PhysRevB.88.220405

  48. BaFeO3 cubic single crystalline thin film: A ferromagnetic insulator: S. Chakraverty,T. Matsuda,N. Ogawa,H. Wadati,E. Ikenaga,M. Kawasaki,Y. Tokura,H. Y. Hwang, (2013) Applied Physics Letters, 103:  142416 . DOI: 10.1063/1.4824210

  49. Atomic scale strucrutre and electronic proeperty of La2FeCrO6/SrTiO3 interface: S. Lv,M. Saito,Z. Wang,C. Chen, S. Chakraverty,M. Kawasaki,Y. Ikuhara, (2013) Journal of Applied Physics, 114: 113705. DOI: 10.1063/1.4821795

  50. Engineered spin-valve type magnetoresistance in Fe3O4-CoFe2O4 core-shell nanoparticles : P. A. Kumar, S. Ray,S.  Chakraverty,D. D. Sarma, (2013) Applied Physics letters, 103:  102406. DOI: 10.1063/1.4819956

  51. Spontaneous B-site order and metallic ferrimagnetism in LaSrVMoO6 grown by pulsed laser deposition : S. Chakraverty,X. Z. Yu,M .Kawasaki,Y.Tokura,H. Y. Hwang, (2013) Applied Physics Letters, 102: 222406. DOI: 10.1063/1.4809937

  52. Atomistic geometry and bonding characteristics at the Sr2FeTaO6/SrTiO3 interface: S. Lv,M. Saito,Z. Wang,S. Chakraverty,M. Kawasaki,Y. Ikuhara, (2013) Applied Physics Letters, 102: 221602. DOI: 10.1063/1.4809536

  53. Spontaneous atomic ordering and magnetism in epitaxially stabilized double perovskites: A. Ohtomo,S. Chakraverty,H. Mashiko,T. Oshima,M. Kawasaki, (2013) Journal of Material Research, 28: 689-695. DOI: 10.1557/jmr.2012.438

  54. Epitaxially Stabilized EuMoO3: A New Itinerant Ferromagne: Y. Kozuka,H. Seki,T. C. Fujita,S. Chakraverty,K. Yoshimatsu,H. Kumigashira,M. Oshima,M. S. Bahramy,R. Arita,M. Kawasaki, (2012) American Chemical Society, 24: 3746. DOI: 10.1021/cm302231k

  55. Magnetoresistance and electroresistance effect in Fe3O4 nanoparticle system: P. A. Kumar,S. Ray,S. Chakraverty,D. D. Sarma, (2012) Journal of Experimental Nanoscience, 391-397. DOI: 10.1080/17458080.2012.662657

  56. Magnetic properties of Sr2FeTaO6 double perovskite epitaxially grown by pulsed-laser deposition: S. Chakraverty,M. Saito,S. Tsukimoto,Y. Ikuhara,A. Ohtomo,M. Kawasaki, (2011) Applied Physics letters, 99: 223101. DOI: 10.1063/1.3663214

  57. Magnetic and electronic properties of ordered double-perovskite La2VMnO6 thin films:  S. Chakraverty,K. Yoshimatsu,Y. Kozuka,H. Kumigashira,M. Oshima,T. Makino,A. Ohtomo,M. Kawasaki, (2011) Physical Review B, 84: 132411(4). DOI: 10.1103/PhysRevB.84.132411

  58. Ferrimagnetism and spontaneous ordering of transition metals in double perovskite La2CrFeO6 films: S. Chakraverty,A. Ohtomo,D. Okuyama,M. Saito,M. Okude,R. Kumai,T. Arima,Y. Tokura,S. Tsukimoto,Y. Ikuhara,M. Kawasaki, (2011) Physical Review B, 84: 064436(5). DOI: 10.1103/PhysRevB.84.064436

  59. Controlled B-site ordering in Sr2CrReO6 double perovskite films by using pulsed laser interval deposition: S. Chakraverty,A. Ohtomo,M. Kawasaki, (2010) Applied Physics letters, 97: 243107. DOI: 10.1063/1.3525578

  60. Epitaxial Structure of (001) and (111)-Oriented Perovskite Ferrate Films Grown by Pulsed-Laser Deposition: S. Chakraverty,A. Ohtomo,M. Okude,K. Ueno,M. Kawasaki, (2010) American Chemical Society, 10: 1725-1729. DOI: 10.1021/cg901355c

  61.  Coercivity of magnetic nanoparticles: a stochastic model: S. Chakraverty,M. Bandyopadhyay, (2008) Journal of Physics: Condensed Matter Physics, 20: 219803. DOI: 10.1088/0953-8984/20/21/219803

  62. Stochastic Modeling of Coercivity- A Measure of Non- equilibrium State: S. Chakraverty,M. Bandyopadhyay, (2007) Journal of Physics: Condensed Matter Physics, 19: 216203. DOI: 10.1088/0953-8984/19/21/216201

  63. Magnetic Coding in a System of Nano-magnetic Particles: S. Chakraverty,A. Frydman,B. Ghosh,S. Kumar, (2006) Applied Physics letters, 88: 42501. DOI: 10.1063/1.2166203

  64. Memory in a magnetic nanoparticle system: Polydispersity and interaction Effects: S. Chakraverty,M. Bandyopadhyay,S. Chatterjee,S. Dattagupta,A.Frydman,S. Sengupta,P. A. Sreeram, (2005) Physical Review B, 71: 054401(8). DOI: 10.1103/PhysRevB.71.054401

  65. Positron annihilation studies of some anomalous features of NiFe2O4 nanocrystals grown in SiO2: S. Chakraverty,S. Mitra,K. Mandal,P. M. G. Nambissan,S. Chattopadhyay, (2005) Physical Review B, 71: 024115(8). DOI: 10.1103/PhysRevB.71.024115

  66. Magnetic Properties of NiFe2O4 Nanoparticles in SiO2 Matrix: S. Chakraverty,K. Mandal,S. Mitra,S. Chattopadhyay,S. Kumar, (2004) Japenese Journal of Applied Physics, 43: 7782. DOI: 10.1143/JJAP.43.7782

  1. Nanomaterials: Synthesis, Properties and Applications: S. Chakraverty,K. Mandal,S. Mitra,S. Chattopadhyay,S. Kumar, (2012) Journal ofMaterials and Manufacturing Process, 27: 1145. DOI: 10.1080/10426914.2012.689458

  1. Spontaneous atomic ordering and magnetism in epitaxially stabilized double perovskites: A. Ohtomo,S. Chakraverty,H. Mashiko,T. Oshima,M. Kawasaki, (2013) MRS Proceedings, 1454: 3 to 13.

Fundings

  • Realization of a prototype spin valve based on perovskite oxide superlattice Sr2FeMoO6-LaBO3 3Years, DAE-BRNS
    Funding Amount: ~30L
    PI: Dr. Suvankar Chakraverty
  • Magneto Opto Electronic properties of perovskite oxide interface with strong spin orbit coupling 3Years, DST Nano ission
    Funding Amount: ~8.5Cr
    PI: Dr. Suvankar Chakraverty

  • 2006

    Ph.D. in material physics

    S.N. Bose National Centre for Basic Sciences

  • 2000

    M.Sc (Physics)

    University of Calcutta, India

  • 1998

    B.Sc (Physics Hons.)

    University of Calcutta, India

  • Research Scientist (Assistant professor equivalent):The Institute of Physical and Chemical Research (RIKEN), Wako, Japan (April 2010 to April 2013 )

  • JSPS-GCOE Postdoctoral Fellow:Tohoku University, Japan (April 2008 to May 2010 )

  • Postdoctoral Researcher:Indian Association for the Cultivation of Science, Kolkata, India. (March 2007 to November 2008 )

  • Visiting Research:Dept. of Engineering Sciences, The Ångström Laboratory, Uppsala University, Uppsala, Sweden (April 2007 to April 2008 )

Awards & Honours

  • The Swedish Foundation for International Cooperation in Research and Higher education had awarded a three month fellowship to work at Uppsala University (Sweden) with Prof. Per Nordblad on Magnetic Tunnel Junctionand Exchange Bias.

  • Kinkenwakate 2008, Japan, best presentation award.

  • 16th International Workshop on Oxide Electronics Tarragona Spain, best presentation award. 2009.

  • Marubun research grant award 2010, Tokyo Japan.


Professional Recognitions