banner_img

Dr. Sangita Roy :(Head of Unit)

Associate Professor (Scientist-E), Head of the Unit

Our research focuses on the biomolecular engineering for the development of simple gel-based biomaterials. We aim to combine the two key processes of Biology, ‘catalysis’ and ‘self-assembly’ to achieve certain advanced functions within the nanobiomaterials. In particular, we are engaged in designing and developing the new biofunctional nanomaterials based on sugar-peptide conjugates using molecular self-assembly approach. These supramolecular nanomaterial scaffolds are explored towards solving the problems of biology (e.g. drug delivery, cancer therapy, diagonistics) and energy resources. We are specifically keen to develop new strategies using these biomaterials and cells from diverse origin for tissue repair and regeneration. More specifically, we are interested in: (a) developing molecularly-engineered short peptide scaffolds based on ECM proteins, such as Laminin and Collagen, Elastin, which are decorated with various polysaccharides to control and direct the cellular fate (b) controlling the cell-microenvironment (biophysical, biochemical and biomechanical cues) interactions through differential self-assembly pathways to understand cell biology and (c) translate these fundamental understandings towards clinical applications. Our group is also exploring toward unravelling the the design rules for the short peptide based self-assembling monomers that are inspired by biology and can develop unique properties in their self-assembled state, such as adaptability, molecular recognition and programmability.

Contact Information :

  • Our research focuses on design and development of new biofunctional nanomaterials based on sugar-peptide conjugates. Molecular self-assembly approach will be followed for bottom-up nanofabrication of these soft namomaterials to generate a variety of nanostructures. These supramolecular nanomaterial scaffolds will be explored towards solving the problems of biology (e.g. drug delivery, cancer therapy, regenerative medicine) and energy resources.

Current Group Members

  • CHETNA

    CHETNA

    Email: chetna.ph23235@inst.ac.in

    Reg. No.: PH23235

  • KARUNA

    KARUNA

    Email: karuna.ph23227@inst.ac.in

    Reg. No.: PH23227

  • MR. RANIT BHANDARY

    MR. RANIT BHANDARY

    Email: ranit.ph22215@inst.ac.in

    Reg. No.: PH22215

  • MR. RAKESH KUMAR

    MR. RAKESH KUMAR

    Email: rakesh.ph21231@inst.ac.in

    Reg. No.: PH21231

  • MS. SWETA MOHANTY

    MS. SWETA MOHANTY

    Email: sweta.ph21250@inst.ac.in

    Reg. No.: PH21250

  • MS. SHAMBHAVI

    MS. SHAMBHAVI

    Email: shambhavi.ph20222@inst.ac.in

    Reg. No.: PH20222

  • MS. JAPLEEN KAUR

    MS. JAPLEEN KAUR

    Email: japleen.ph20221@inst.ac.in

    Reg. No.: PH20221

  • MR. SOURAV SEN

    MR. SOURAV SEN

    Email: sourav.ph18211@inst.ac.in

    Reg. No.: PH18211

Alumni

  • MR. VIJAY KUMAR PAL

    MR. VIJAY KUMAR PAL

    Reg. No.: PH16235

    Designation: PhD Scholar

    Jan 2017 - Sep 2022

  • MS. POOJA SHARMA

    MS. POOJA SHARMA

    Reg. No.: PH16220

    Designation: PhD Scholar

    Aug 2016 - Sep 2022

  • MS. HARSIMRAN KAUR

    MS. HARSIMRAN KAUR

    Reg. No.: PH15208

    Designation: PhD Scholar

    Aug 2015 - Dec 2021

  • MS. RASHMI JAIN

    MS. RASHMI JAIN

    Reg. No.: PH14203

    Designation: PhD Scholar

    Aug 2014 - Jun 2020

  • 1.

    Dramatic Specific Ion Effect in Supramolecular Hydrogels: , N. Javid, P. W. J. M. Frederix, D. A. Lamprou, A. J. Urquhart, N. T. Hunt, P. J. Halling,R. V. Ulijn , 2012) , 18: 11723-11731 , Chem. Eur. J. , https://doi.org/10.1002/chem.201201217
  • 2.

    Cellulose nano-fiber and fly-ash based nanohybrids: a facile and sustainable thermal insulating material: , Sourav Sen, Ajit Singh, Kamalakannan Kailasam, Chandan Bera, Sangita Roy , (2022) , Research Square , 10.21203/rs.3.rs-2245372/v1
  • 3.

    Biomass-derived cellulose nanofibers and iron oxide-based nanohybrids for thermal insulation application: , Sourav Sen, Ajit Singh, Kamalakannan Kailasam, Chandan Bera and Sangita Roy , (2022) , 4: 3381-3390. , Nanoscale Advances , https://doi.org/10.1039/D2NA00010E
  • 4.

    Exploring the TEMPO-Oxidized Nanofibrillar Cellulose and Short Ionic-Complementary Peptide Composite Hydrogel as Biofunctional Cellular Scaffolds: , P. Sharma, V. K. Pal, H. Kaur, S. Roy , (2022) , ASAP: ASAP , Biomacromolecules , https://doi.org/10.1021/acs.biomac.2c00234
  • 5.

    Recent developments in biomass derived cellulose aerogel materials for thermal insulation application: a review: , S. Sen, A. Singh, C. Bera, S. Roy, K. Kailasam , (2022) , Cellulose , https://doi.org/10.1007/s10570-022-04586-7
  • 6.

    Cooperative Metal Ion Coordination to the Short Self-Assembling Peptide Promotes Hydrogelation and Cellular Proliferation: , V.K. Pal, S. Roy , (2022) , 22: 2100462 , Macromol. Biosci , https://doi.org/10.1002/mabi.202100462
  • 7.

    Designing Nanofibrillar Cellulose Peptide conjugated polymeric hydrogel scaffold for controlling cellular behaviour: , V.K. Pal, R. Jain, S. Sen, K. Kailasam, S. Roy , (2021) , 28: 10335–10357 , Cellulose , doi.org/10.1007/s10570-021-04176-z
  • 8.

    Designing aromatic N-cadherin mimetic short-peptide-based bioactive scaffolds for controlling cellular behaviour: , H. Kaur, S. Roy , (2021) , 9: 5898-5913 , J. Mater. Chem. B , doi.org/10.1039/D1TB00598G
  • 9.

    Enzyme-Induced Supramolecular Order in Pyrene Dipeptide Hydrogels for the Development of an Efficient Energy-Transfer Template: , H. Kaur,S. Roy , (2021) , 22 (6): 2393–2407 , Biomacromolecules , doi.org/10.1021/acs.biomac.1c00187
  • 10.

    An overview of latest advances in exploring bioactive peptide hydrogels for neural tissue engineering: , P. Sharma, V. K. Pal, S. Roy , (2021) , , 9: 3911-3938 , Biomater. Sci. , doi.org/10.1039/D0BM02049D
  • 11.

    Elastin-inspired supramolecular hydrogels: a multifaceted extracellular matrix protein in biomedical engineering: , A. Sharma, P. Sharma, S. Roy , (2021) , 17: 3266-3290 , Soft Matter , doi.org/10.1039/D0SM02202K
  • 12.

    Controlling Neuronal Cell Growth through Composite Laminin Supramolecular Hydrogels: , R. Jain, S. Roy , (2020) , 6(5): 2832–2846 , ACS Biomater. Sci. Eng. , https://doi.org/10.1021/acsbiomaterials.9b01998
  • 13.

    Tuning the gelation behavior of short laminin derived peptides via solvent mediated self-assembly: , R. Jain,S Roy , (2020) , 108: 110483. , Mater. Sci. Eng C , 10.1016/j.msec.2019.110483
  • 14.

    Accessing Highly Tunable Nanostructured Hydrogels in a Short Ionic Complementary Peptide Sequence via pH Trigger: , H. Kaur, P. Sharma, N. Patel, V. K. Pla, S. Roy , (2020) , 36 (41): 12107–12120 , Langmuir , https://doi.org/10.1021/acs.langmuir.0c01472
  • 15.

    Triggering Supramolecular Hydrogelation Using a Protein–Peptide Coassembly Approach: , R. Jain, V. K. Pal, S. Roy , (2020) , 21 (10): 4180–4193 , Biomacromolecules , doi.org/10.1021/acs.biomac.0c00984
  • 16.

    Pathway-Dependent Preferential Selection and Amplification of Variable Self-Assembled Peptide Nanostructures and Their Biological Activities: , H. kaur, R. Jain, S. Roy , (2020) , 12 (47): 52445–52456 , ACS Appl. Mater. Interfaces , doi.org/10.1021/acsami.0c16725
  • 17.

    Tuning supramolecular structure and function of collagen mimetic ionic complementary peptides via electrostatic interactions: , VK Pal, R. Jain, S. Roy , (2019) , 36 (4): 1003-1013 , Langmuir , 10.1021/acs.langmuir.9b02941
  • 18.

    Inducing Differential Self-Assembling Behavior in Ultrashort Peptide Hydrogelators Using Simple Metal Salts: , P. Sharma, H. Kaur,S.Roy , (2019) , 20 (7): 2610-2624 , Biomacromolecules , 10.1021/acs.biomac.9b00416
  • 19.

    Designing bioactive scaffold from coassembled collagen-laminin short peptide hydrogels for controlling cell behaviour,: , R. Jain,S. Roy , (2019) , 9: 38745 – 38759. , RSC Advances , 10.1039/C9RA07454F
  • 20.

    Tunable Supramolecular Gels by Varying Thermal History: , S. Debnath†, Y.M. Abul-Haija, P. Frederix, S. Ramalhete, A. Hirst, N. Javid, N. Hunt. S. Kelly, J. Angulo, Y. Khimyak,R.V. Ulijn , (2019) , Chem. Eur. J , https://doi.org/10.1002/chem.201806281
  • 21.

    Unravelling the Design Rules in Ultrashort Amyloid-Based Peptide Assemblies toward Shape-Controlled Synthesis of Gold Nanoparticles: , R. Jain, G. Khandelwal,S. Roy , (2019) , 35: 5878−5889 , Langmuir , https://doi.org/10.1021/acs.langmuir.8b04020
  • 22.

    Designing a Tenascin-C-Inspired Short Bioactive Peptide Scaffold to Direct and Control Cellular Behavior: , P. Sharma, H. Kaur,S. Roy , (2019) , 5 (12): 6497-6510 , ACS Biomater. Sci. Eng. , https://doi.org/10.1021/acsbiomaterials.9b01115
  • 23.

    Pathway-dependent Gold Nanoparticle Formation by Biocatalytic Self-assembly: , J.K. Sahoo, N. Javid, K.L. Duncan, L.A. Aitken, R.V. Ulijn , (2017) , 9: 12330 , Nanoscale , https://doi.org/10.1039/C7NR04624C
  • 24.

    Tunable Supramolecular Hydrogels for Selection of Lineage-Guiding Metabolites in Stem Cell Cultures: , E.V. Alakpa, V. Jayawarna, A. Lampel, K.V. Burgess, C.C. West, S.C.J. Bakker, N. Javid, S. Fleming, D.A. Lamprou, J. Yang, A. Miller, A.J. Urquhart, P.W.J.M. Frederix, N.T. Hunt, B.Péault, R.V. Ulijn and M. J. Dalby , (2016) , 1: 298-319. , Chem , https://doi.org/10.1016/j.chempr.2016.07.001
  • 25.

    Biocatalytically Triggered Co-Assembly of Two-Component Core/Shell Nanofibers,: , Y. M. Abul-Haija, P. W. J. M. Frederix, N. Javid, V. Jayawarna and R.V. Ulijn , (2014) , 10: 973-979 , Small , https://doi.org/10.1002/smll.201301668
  • 26.

    Pickering Stabilized Peptide Gel Particles as Tunable Microenvironments for Biocatalysis: , G. Scott, Y. M. Abul-Haija, S. Fleming, S. Bai and R.V. Ulijn , (2013) , 29: 14321-14327. , Langmui , https://doi.org/10.1021/la403448s
  • 27.

    Cooperative Self-Assembly of Peptide Gelators and Proteins: , N. Javid, M. Zelzer, Z. Yang, J. Sefcik and R.V. Ulijn , (2013) , 14: 4368–4376 , Biomacromolecules , https://doi.org/10.1021/bm401319c
  • 28.

    Peptide Nanofibers with Dynamic Instability through Non-Equilibrium Biocatalytic Assembly: , : S. Debnath,R.V. Ulijn, , (2013) , 135: 16789-16792 , J. Am. Chem. Soc. , https://doi.org/10.1021/ja4086353
  • 29.

    Salt-Induced Control of Supramolecular Order in BiocatalyticHydrogelation: , N. Javid, J. Sefcik, P. J. Halling,R. V. Ulijn , (2012) , 28: 16664–16670 , Langmuir
  • 30.

    Exploiting CH-π Interactions in Supramolecular Hydrogels of Aromatic Carbohydrate Amphiphiles,: , L. S. Birchall, V. Jayawarna, M. Hughes, E. Irvine, G. T. Okorogheye, N. Saudi, E. De Santis, T. Tuttle, A. A. Edwards and R. V. Ulijn , (2011) , 2: 1349-1355 , Chem. Sci , https://doi.org/10.1039/C0SC00621A
  • 31.

    Supramolecular Structures of Enzyme Clusters: , N. Javid, K. Vogtt, A. R. Hirst, A. Hoell, I. W. Hamley, R. V. Ulijn and J. Sefcik , (2011) , 2: 1395-1399 , J. Phys. Chem. Lett. , https://doi.org/10.1021/jz200446j
  • 32.

    Fmoc Hydrogels from Aromatic Carbohydrate Amphiphiles, J. Pharm. Pharmacol: , A. A. Edwards, L. S. Birchall, V. Jayawarna, M. Hughes, T. Tuttle, N. Saudi, G. Okorgheye, R. V. Ulijn , (2010) , 62: 1331-1332 , The UK-PharmSci Conference, The Science of Medicine , https://doi.org/10.1111/j.2042-7158.2010.01178.x
  • 33.

    Surfactant-Stabilized Small Hydrogel Particles in Oil: Hosts for Remarkable Activation of Enzymes in Organic Solvents: , D. Das, S. Debnath, and P. K. Das , (2010) , 16: 4911-4922 , Chem. Eur. J , https://doi.org/10.1002/chem.200903205
  • 34.

    Exploiting Biocatalysis in the Synthesis of Supramolecular Polymers, Enzymatic Polymerisations,: , R.V. Ulijn , (2010) , 237: 127-143 , Advances in Polymer Science , https://doi.org/10.1007/12_2010_75
  • 35.

    Biocatalytic Induction of Supramolecular Order, Nature Chemistry: , A. R. Hirst†, M. Arora, A. K. Das, N. Hodson, P. Murray, N. Javid, J. Sefcik, J. Boekhoven, J.H. van Esch, S. Santabarbara, N. T. Hunt and R. V. Ulijn , (2010) , 2: 1089-1094. , Nature Chemistry , https://doi.org/10.1038/nchem.861
  • 36.

    Antibacterial Hydrogels of Amino Acid-Based Cationic Amphiphiles.: , P. K. Das , (2008) , 100: 756-764 , Biotech. Bioeng , https://doi.org/10.1002/bit.21803
  • 37.

    Antimicrobial Activity of Amino Acids and Dipeptide-based Amphiphiles, J. Biotech. 2008, 136, S28–S29 (Biotechnology for the Sustainability of Human Society: , N. Kayal, R. N. Mitra, P. K. Das , (2008) , 136: , International Biotechnology Symposium and Exhibition IBS
  • 38.

    Alkyl Chain Length Dependent Hydrogelation of L-Tryptophan Based Amphiphile.: , A. Dasgupta, and P. K. Das , (2007) , 23: 11769-11776 , Langmuir , https://doi.org/10.1021/la701558m
  • 39.

    Structure and Properties of Low Molecular Weight Amphiphilic Peptide Hydrogelators: , R. N. Mitra, D. Das, and P. K. Das , (2007) , 111: 14107-14113 , J. Phys. Chem. B , https://doi.org/10.1021/jp076495x
  • 40.

    Nonionic Surfactants: A Key to Enhance the Enzyme Activity at Cationic Reverse Micellar Interface.: , A. Shome, and P. K. Das. , (2007) , 23: 4130-4136 , Langmuir , https://doi.org/10.1021/la062804j
  • 41.

    Tailoring of Horseradish Peroxidase Activity in Cationic Water-in-Oil Microemulsions: , A. Dasgupta, and P. K. Das , (2006) , 22: 4567-4573. , Langmuir , https://doi.org/10.1021/la0602867
  • 42.

    A Control Over Accessibility of Immobilized Enzymes through Porous Coating Layer: , K. Mohanta, A. J. Pal, and P. K. Das , (2006) , 304: 329-334 , J. Colloid Interface Sci , https://doi.org/10.1016/j.jcis.2006.08.065
  • 43.

    Water Gelation of an Amino Acid Based Hydrogelator.: , D. Das, A. Dasgupta, R. N. Mitra, S. Debnath, and P. K. Das , (2006) , 12: 5068-5074. , Chem. Eur. J. , http://dx.doi.org/10.1002/chem.200501638
  • 44.

    Asymmetric Resolution in Ester Reduction by NaBH4 at the Interface of Aqueous Aggregates of Amino Acid, Peptide, and Chiral Counter-ion based Cationic Surfactants.: , A. Dasgupta, R. N. Mitra, and P. K. Das , (2006) , 1: 780-788. , Chem. Asian. J , https://doi.org/10.1002/asia.200600206
  • 45.

    Physicochemical Studies on Cetylammonium Bromide and its Modified (mono-, di- and trihydroxyethylated) Head Group Analogues. Their Micellization Characteristics in Wwater and Thermodynamic an: , D. Mitra, I. Chakraborty, S. C. Bhattacharya, S. P. Moulik, D. Das, and P. K. Das , (2006) , 110: 11314-11326 , J. Phys. Chem. B , https://doi.org/10.1021/jp055720c
  • 46.

    Head Group Size or Hydrophilicity of Surfactant: the Major Regulator of Lipase Activity in Cationic w/o Microemulsions.: , D. Das, R. N. Mitra, A. Dasgupta and P. K. Das , (2005) , 11: 4881-4889 , Chem. Eur. J. , https://doi.org/10.1002/chem.200500244
  • 47.

    Geometric Constraints at the Surfactant Head Group: Effect on Lipase Activity in Cationic Reverse Micelles.: , R. N. Mitra, A. Dasgupta, D. Das, S. Debnath, and P. K. Das , (2005) , 21: 12115-12123 , Langmuir , https://doi.org/10.1021/la052226r
  • 48.

    Amino Acid Based Cationic Surfactants in Aqueous Solutions: Physicochemical Study and Application of Supramolecular Chirality in Ketone Reduction: , D. Das, A. Dasgupta, R. N. Mitra, and P. K. Das , (2005) , 21: 10398-10404 , Langmuir , https://doi.org/10.1021/la051548s
  • 49.

    Efficient and Simple NaBH4 Reduction of Esters at Cationic Micellar Surface: , D. Das, and P. K. Das , (2004) , 6: 4133-4136. , Org. Lett , 10.1021/ol0481176
  • 1.

    .Exploiting Biocatalysis in the Synthesis of Supramolecular Polymers, Enzymatic Polymerisations: , R.V. Ulijn , (2010) , 237: 127-143 , Advances in Polymer Science
  • 1.

    8th Chandigarh Science Congress (Chascon-2014), Panjab University: , Chandigarh Science Congress , (2014)
  • 2.

    International Conference on Interdisciplinary areas with Chemical Sciences (ICIACS 2013), Panjab University: , Chemical Sciences , (2013)
  • 3.

    Self-assembled Peptide Nanostructures: A Microscopic Insight, AFM Users Meeting: , V. Jayawarna, R. V. Ulijn , (2012)
  • 4.

    Peptide Hydrogels via Non-equilibrium Biocatalytic Self-assembly, RAMS Meeting, University of Strathclyde: , R. V. Ulijn , (2012)
  • 5.

    Highly Tunable Gels via Non-equilibrium Biocatalytic Self-assembly, UK-India Symposium on Molecular Materials Chemistry, University of Strathclyde: , R. V. Ulijn , (2012)
  • 6.

    Biocatalytic Self-Assembly of Supramolecular Polymers, 10th International Conference in Materials Chemistry: , R. V. Ulijn , (2011)

  • Project Associate:ChemBiotek Research International Pvt. Ltd.,, Kolkata, India (April 2002 to May 2003 )

  • PhD Research Fellow: Department of Biological Chemistry, Indian Association for the Cultivation of Science,, Kolkata, India (April 2004 to May 2009 )

  • Consultant:BioGelx, Glasgow,, UK (February 2013 to June 2013 )

  • Post Doctoral Research Fellow: Department of Pure & Applied Chemistry, University of Strathclyde,, Glasgow, UK (April 2009 to April 2013 )

  • Visiting Scientist: Institute of Nano Science and Technology,, Mohali (July 2013 to January 2014 )

  • Scientist C: Institute of Nano Science and Technology, Mohali (February 2014 to December 2018 )

  • Scientist D (Assistant Professor): Institute of Nano Science and Technology, Mohali (January 2019 to December 2021 )

  • Scientist E: Institute of Nano Science and Technology, Mohali (January 2022 to Present till date )

Loading...