Faculty Directory

Dr. Sangita Roy

Associate Professor (Scientist-E)

Our research focuses on the biomolecular engineering for the development of simple gel-based biomaterials. We aim to combine the two key processes of Biology, ‘catalysis’ and ‘self-assembly’ to achieve certain advanced functions within the nanobiomaterials. In particular, we are engaged in designing and developing the new biofunctional nanomaterials based on sugar-peptide conjugates using molecular self-assembly approach. These supramolecular nanomaterial scaffolds are explored towards solving the problems of biology (e.g. drug delivery, cancer therapy, diagonistics) and energy resources. We are specifically keen to develop new strategies using these biomaterials and cells from diverse origin for tissue repair and regeneration. More specifically, we are interested in: (a) developing molecularly-engineered short peptide scaffolds based on ECM proteins, such as Laminin and Collagen, Elastin, which are decorated with various polysaccharides to control and direct the cellular fate (b) controlling the cell-microenvironment (biophysical, biochemical and biomechanical cues) interactions through differential self-assembly pathways to understand cell biology and (c) translate these fundamental understandings towards clinical applications. Our group is also exploring toward unravelling the the design rules for the short peptide based self-assembling monomers that are inspired by biology and can develop unique properties in their self-assembled state, such as adaptability, molecular recognition and programmability.


Research Interest

  • Our research focuses on design and development of new biofunctional nanomaterials based on sugar-peptide conjugates. Molecular self-assembly approach will be followed for bottom-up nanofabrication of these soft namomaterials to generate a variety of nanostructures. These supramolecular nanomaterial scaffolds will be explored towards solving the problems of biology (e.g. drug delivery, cancer therapy, regenerative medicine) and energy resources.

Research Highlights

empty! record not found

PhD Students


    Email: sweta.ph21250@inst.ac.in

    Reg. No.: PH21250

    Working Since Jan, 2022

    Email: rakesh.ph21231@inst.ac.in

    Reg. No.: PH21231

    Working Since Jan, 2022
  • Ms. Archita Sharma

    Email: archita.ph19203@inst.ac.in

    Reg. No.: PH19203

    Working Since Aug, 2019

    Email: arushi.ph20223@inst.ac.in

    Reg. No.: PH20223

    Working Since Aug, 2020

    Email: shambhavi.ph20222@inst.ac.in

    Reg. No.: PH20222

    Working Since Aug, 2020

    Email: japleen.ph20221@inst.ac.in

    Reg. No.: PH20221

    Working Since Aug, 2020
  • Ms. Pooja Sharma

    Email: pooja.ph16220@inst.ac.in

    Reg. No.: PH16220

    Working Since Aug, 2016
  • Mr. Vijay Kumar Pal

    Email: vijay.ph16235@inst.ac.in

    Reg. No.: PH16235

    Working Since Jan, 2017
  • Mr. Sourav Sen

    Email: sourav.ph18211@inst.ac.in

    Reg. No.: PH18211

    Working Since Aug, 2018

PhD Students

  • Ms. Harsimran Kaur

    Email: harsimran.ph15208@inst.ac.in

    Reg. No.: PH15208

  • Ms. Rashmi Jain

    Email: rashmi.jain715@gmail.com

    Reg. No.: PH14203

  1. Exploring the TEMPO-Oxidized Nanofibrillar Cellulose and Short Ionic-Complementary Peptide Composite Hydrogel as Biofunctional Cellular Scaffolds: P. Sharma, V. K. Pal, H. Kaur, S. Roy, (2022) Biomacromolecules, ASAP: ASAP. DOI: doi.org/10.1021/acs.biomac.2c00234

  2. Recent developments in biomass derived cellulose aerogel materials for thermal insulation application: a review: S. Sen, A. Singh, C. Bera, S. Roy, K. Kailasam, (2022) Cellulose, -: -. DOI: doi.org/10.1007/s10570-022-04586-7

  3. Cooperative Metal Ion Coordination to the Short Self-Assembling Peptide Promotes Hydrogelation and Cellular Proliferation: V.K. Pal, S. Roy, (2022) Macromol. Biosci., 22: 2100462. DOI: doi.org/10.1002/mabi.202100462

  4. Designing Nanofibrillar Cellulose Peptide conjugated polymeric hydrogel scaffold for controlling cellular behaviour: V.K. Pal, R. Jain, S. Sen, K. Kailasam, S. Roy, (2021) Cellulose, 28: 10335–10357. DOI: doi.org/10.1007/s10570-021-04176-z

  5. Designing aromatic N-cadherin mimetic short-peptide-based bioactive scaffolds for controlling cellular behaviour: H. Kaur, S. Roy, (2021) J. Mater. Chem. B, 9: 5898-5913. DOI: doi.org/10.1039/D1TB00598G

  6. Enzyme-Induced Supramolecular Order in Pyrene Dipeptide Hydrogels for the Development of an Efficient Energy-Transfer Template: H. Kaur,S. Roy, (2021) Biomacromolecules, 22 (6): 2393–2407. DOI: doi.org/10.1021/acs.biomac.1c00187

  7. An overview of latest advances in exploring bioactive peptide hydrogels for neural tissue engineering: P. Sharma, V. K. Pal, S. Roy, (2021) Biomater. Sci., 9: 3911-3938. DOI: doi.org/10.1039/D0BM02049D

  8. Elastin-inspired supramolecular hydrogels: a multifaceted extracellular matrix protein in biomedical engineering: A. Sharma, P. Sharma, S. Roy, (2021) Soft Matter, 17: 3266-3290. DOI: doi.org/10.1039/D0SM02202K

  9. Pathway-Dependent Preferential Selection and Amplification of Variable Self-Assembled Peptide Nanostructures and Their Biological Activities: H. kaur, R. Jain, S. Roy, (2020) ACS Appl. Mater. Interfaces, 12 (47): 52445–52456. DOI: doi.org/10.1021/acsami.0c16725

  10. Accessing Highly Tunable Nanostructured Hydrogels in a Short Ionic Complementary Peptide Sequence via pH Trigger: H. Kaur, P. Sharma, N. Patel, V. K. Pla, S. Roy, (2020) Langmuir, 36 (41): 12107–12120. DOI: doi.org/10.1021/acs.langmuir.0c01472

  11. Triggering Supramolecular Hydrogelation Using a Protein–Peptide Coassembly Approach: R. Jain, V. K. Pal, S. Roy, (2020) Biomacromolecules, 21 (10): 4180–4193. DOI: doi.org/10.1021/acs.biomac.0c00984

  12. Controlling Neuronal Cell Growth through Composite Laminin Supramolecular Hydrogels: R. Jain, S. Roy, (2020) ACS Biomater. Sci. Eng., 6(5): 2832–2846. DOI: 10.1021/acsbiomaterials.9b01998

  13. Tuning the gelation behavior of short laminin derived peptides via solvent mediated self-assembly: R. Jain,S Roy, (2020) Mater. Sci. Eng C, 108: 110483.. DOI: 10.1016/j.msec.2019.110483

  14. Tuning supramolecular structure and function of collagen mimetic ionic complementary peptides via electrostatic interactions: VK Pal, R. Jain, S. Roy, (2019) Langmuir, 36 (4): 1003-1013. DOI: 10.1021/acs.langmuir.9b02941

  15. Inducing Differential Self-Assembling Behavior in Ultrashort Peptide Hydrogelators Using Simple Metal Salts: P. Sharma, H. Kaur,S.Roy, (2019) Biomacromolecules, 20 (7): 2610-2624.. DOI: 10.1021/acs.biomac.9b00416

  16. Designing a Tenascin-C-Inspired Short Bioactive Peptide Scaffold to Direct and Control Cellular Behavior: P. Sharma, H. Kaur,S. Roy, (2019) ACS Biomater. Sci. Eng., 5 (12): 6497-6510.. DOI: 10.1021/acsbiomaterials.9b01115

  17. Designing bioactive scaffold from coassembled collagen-laminin short peptide hydrogels for controlling cell behaviour,: R. Jain,S. Roy, (2019) RSC Advances, 9: 38745 – 38759.. DOI: 10.1039/C9RA07454F

  18. Tunable Supramolecular Gels by Varying Thermal History: S. Debnath†, Y.M. Abul-Haija, P. Frederix, S. Ramalhete, A. Hirst, N. Javid, N. Hunt. S. Kelly, J. Angulo, Y. Khimyak,R.V. Ulijn, (2019) Chem. Eur. J., . DOI: 10.1002/chem.201806281

  19. Unravelling the Design Rules in Ultrashort Amyloid-Based Peptide Assemblies toward Shape-Controlled Synthesis of Gold Nanoparticles: R. Jain, G. Khandelwal,S. Roy, (2019) Langmuir, 35: 5878−5889.. DOI: 10.1021/acs.langmuir.8b04020

  20. Pathway-dependent Gold Nanoparticle Formation by Biocatalytic Self-assembly: J.K. Sahoo, N. Javid, K.L. Duncan, L.A. Aitken, R.V. Ulijn, (2017) Nanoscale, 9: 12330.. DOI: 10.1039/C7NR04624C

  21. Tunable Supramolecular Hydrogels for Selection of Lineage-Guiding Metabolites in Stem Cell Cultures: E.V. Alakpa, V. Jayawarna, A. Lampel, K.V. Burgess, C.C. West, S.C.J. Bakker, N. Javid, S. Fleming, D.A. Lamprou, J. Yang, A. Miller, A.J. Urquhart, P.W.J.M. Frederix, N.T. Hunt, B.Péault, R.V. Ulijn and M. J. Dalby, (2016) Chem, 1: 298-319.. DOI: 10.1016/j.chempr.2016.07.001

  22. Biocatalytically Triggered Co-Assembly of Two-Component Core/Shell Nanofibers,: Y. M. Abul-Haija, P. W. J. M. Frederix, N. Javid, V. Jayawarna and R.V. Ulijn, (2014) Small, 10: 973-979.. DOI: 10.1002/smll.201301668

  23. Peptide Nanofibers with Dynamic Instability through Non-Equilibrium Biocatalytic Assembly: S. Debnath,R.V. Ulijn, (2013) J. Am. Chem. Soc., 135: 16789-16792. DOI: 10.1021/ja4086353

  24. Cooperative Self-Assembly of Peptide Gelators and Proteins: N. Javid, M. Zelzer, Z. Yang, J. Sefcik and R.V. Ulijn, (2013) Biomacromolecules, 14: 4368–4376.. DOI: 10.1021/bm401319c

  25. Pickering Stabilized Peptide Gel Particles as Tunable Microenvironments for Biocatalysis: G. Scott, Y. M. Abul-Haija, S. Fleming, S. Bai and R.V. Ulijn, (2013) Langmuir, 29: 14321-14327.. DOI: 10.1021/la403448s

  26. Salt-Induced Control of Supramolecular Order in BiocatalyticHydrogelation: N. Javid, J. Sefcik, P. J. Halling,R. V. Ulijn, (2012) Langmuir, 28: 16664–16670.

  27. Dramatic Specific Ion Effect in Supramolecular Hydrogels: N. Javid, P. W. J. M. Frederix, D. A. Lamprou, A. J. Urquhart, N. T. Hunt, P. J. Halling,R. V. Ulijn, (2012) Chem. Eur. J., 18: 11723-11731. DOI: 10.1002/chem.201201217

  28. Exploiting CH-π Interactions in Supramolecular Hydrogels of Aromatic Carbohydrate Amphiphiles,: L. S. Birchall, V. Jayawarna, M. Hughes, E. Irvine, G. T. Okorogheye, N. Saudi, E. De Santis, T. Tuttle, A. A. Edwards and R. V. Ulijn, (2011) Chem. Sci., 2: 1349-1355. DOI: 10.1039/C0SC00621A

  29. Supramolecular Structures of Enzyme Clusters: N. Javid, K. Vogtt, A. R. Hirst, A. Hoell, I. W. Hamley, R. V. Ulijn and J. Sefcik, (2011) J. Phys. Chem. Lett., 2: 1395-1399.. DOI: 10.1021/jz200446j

  30. Fmoc Hydrogels from Aromatic Carbohydrate Amphiphiles, J. Pharm. Pharmacol: A. A. Edwards, L. S. Birchall, V. Jayawarna, M. Hughes, T. Tuttle, N. Saudi, G. Okorgheye, R. V. Ulijn, (2010) The UK-PharmSci Conference, The Science of Medicine, 62: 1331-1332. DOI: 10.1111/j.2042-7158.2010.01178.x

  31. Surfactant-Stabilized Small Hydrogel Particles in Oil: Hosts for Remarkable Activation of Enzymes in Organic Solvents: D. Das, S. Debnath, and P. K. Das, (2010) Chem. Eur. J, 16: 4911-4922.. DOI: 10.1002/chem.200903205

  32. Biocatalytic Induction of Supramolecular Order, Nature Chemistry: A. R. Hirst†, M. Arora, A. K. Das, N. Hodson, P. Murray, N. Javid, J. Sefcik, J. Boekhoven, J.H. van Esch, S. Santabarbara, N. T. Hunt and R. V. Ulijn, (2010) Nature Chemistry, 2: 1089-1094. DOI: 10.1038/nchem.861

  33. Exploiting Biocatalysis in the Synthesis of Supramolecular Polymers, Enzymatic Polymerisations,: R.V. Ulijn, (2010) Advances in Polymer Science, 237: 127-143.. DOI: 10.1007/12_2010_75

  34. Antimicrobial Activity of Amino Acids and Dipeptide-based Amphiphiles, J. Biotech. 2008, 136, S28–S29 (Biotechnology for the Sustainability of Human Society: N. Kayal, R. N. Mitra, P. K. Das, (2008) International Biotechnology Symposium and Exhibition IBS, 136: .

  35. Antibacterial Hydrogels of Amino Acid-Based Cationic Amphiphiles.: P. K. Das, (2008) Biotech. Bioeng, 100: 756-764.. DOI: 10.1002/bit.21803

  36. Alkyl Chain Length Dependent Hydrogelation of L-Tryptophan Based Amphiphile.: A. Dasgupta, and P. K. Das., (2007) Langmuir, 23: 11769-11776.. DOI: 10.1021/la701558m

  37. Structure and Properties of Low Molecular Weight Amphiphilic Peptide Hydrogelators: R. N. Mitra, D. Das, and P. K. Das, (2007) J. Phys. Chem. B, 111: 14107-14113. DOI: 10.1021/jp076495x

  38. Nonionic Surfactants: A Key to Enhance the Enzyme Activity at Cationic Reverse Micellar Interface.: A. Shome, and P. K. Das., (2007) Langmuir, 23: 4130-4136.. DOI: 10.1021/la062804j

  39. Tailoring of Horseradish Peroxidase Activity in Cationic Water-in-Oil Microemulsions: A. Dasgupta, and P. K. Das, (2006) Langmuir, 22: 4567-4573.. DOI: 10.1021/la0602867

  40. A Control Over Accessibility of Immobilized Enzymes through Porous Coating Layer: K. Mohanta, A. J. Pal, and P. K. Das, (2006) J. Colloid Interface Sci., 304: 329-334. DOI: 10.1016/j.jcis.2006.08.065

  41. Water Gelation of an Amino Acid Based Hydrogelator.: D. Das, A. Dasgupta, R. N. Mitra, S. Debnath, and P. K. Das, (2006) Chem. Eur. J., 12: 5068-5074. DOI: 10.1002/chem.200501638

  42. Asymmetric Resolution in Ester Reduction by NaBH4 at the Interface of Aqueous Aggregates of Amino Acid, Peptide, and Chiral Counter-ion based Cationic Surfactants.: A. Dasgupta, R. N. Mitra, and P. K. Das, (2006) Chem. Asian. J, 1: 780-788.. DOI: 10.1002/asia.200600206

  43. Physicochemical Studies on Cetylammonium Bromide and its Modified (mono-, di- and trihydroxyethylated) Head Group Analogues. Their Micellization Characteristics in Wwater and Thermodynamic an: D. Mitra, I. Chakraborty, S. C. Bhattacharya, S. P. Moulik, D. Das, and P. K. Das, (2006) J. Phys. Chem. B, 110: 11314-11326.. DOI: 10.1021/jp055720c

  44. Amino Acid Based Cationic Surfactants in Aqueous Solutions: Physicochemical Study and Application of Supramolecular Chirality in Ketone Reduction: D. Das, A. Dasgupta, R. N. Mitra, and P. K. Das, (2005) Langmuir, 21: 10398-10404.. DOI: 10.1021/la051548s

  45. Head Group Size or Hydrophilicity of Surfactant: the Major Regulator of Lipase Activity in Cationic w/o Microemulsions.: D. Das, R. N. Mitra, A. Dasgupta and P. K. Das, (2005) Chem. Eur. J., 11: 4881-4889. DOI: 10.1002/chem.200500244

  46. Geometric Constraints at the Surfactant Head Group: Effect on Lipase Activity in Cationic Reverse Micelles.: R. N. Mitra, A. Dasgupta, D. Das, S. Debnath, and P. K. Das, (2005) Langmuir, 21: 12115-12123.. DOI: 10.1021/la052226r

  47. Efficient and Simple NaBH4 Reduction of Esters at Cationic Micellar Surface: D. Das, and P. K. Das, (2004) Org. Lett., 6: 4133-4136.. DOI: 10.1021/ol0481176

  1. Tuning the gelation behavior of short laminin derived peptides via solvent mediated self-assembly: R. Jain,S Roy, (2020) Mater. Sci. Eng C, 108: 110483.. DOI: 10.1016/j.msec.2019.110483

  1. Exploiting Biocatalysis in the Synthesis of Supramolecular Polymers, Enzymatic Polymerisations: R.V. Ulijn, (2010) Advances in Polymer Science, 237: 127-143..

  1. 8th Chandigarh Science Congress (Chascon-2014), Panjab University: Chandigarh Science Congress, (2014) .

  2. International Conference on Interdisciplinary areas with Chemical Sciences (ICIACS 2013), Panjab University: Chemical Sciences, (2013) .

  3. Highly Tunable Gels via Non-equilibrium Biocatalytic Self-assembly, UK-India Symposium on Molecular Materials Chemistry, University of Strathclyde: R. V. Ulijn, (2012) .

  4. Peptide Hydrogels via Non-equilibrium Biocatalytic Self-assembly, RAMS Meeting, University of Strathclyde: R. V. Ulijn, (2012) .

  5. Self-assembled Peptide Nanostructures: A Microscopic Insight, AFM Users Meeting: V. Jayawarna, R. V. Ulijn, (2012) .

  6. Biocatalytic Self-Assembly of Supramolecular Polymers, 10th International Conference in Materials Chemistry: R. V. Ulijn, (2011) .


empty! record not found

  • 2009


    Indian Association for the Cultivation of Science, Kolkata, India.

  • 2002


    Department of Chemistry, University of Calcutta, India.

  • 2000


    Department of Chemistry, University of Calcutta, India.

  • Scientist E:Institute of Nano Science and Technology, Mohali (January 2022 to Present till date )

  • Scientist D (Assistant Professor):Institute of Nano Science and Technology, Mohali (January 2019 to December 2021 )

  • Scientist C:Institute of Nano Science and Technology, Mohali (February 2014 to December 2018 )

  • Visiting Scientist:Institute of Nano Science and Technology,, Mohali (July 2013 to January 2014 )

  • Post Doctoral Research Fellow:Department of Pure & Applied Chemistry, University of Strathclyde,, Glasgow, UK (April 2009 to April 2013 )

  • Consultant:BioGelx, Glasgow,, UK (February 2013 to June 2013 )

  • PhD Research Fellow:Department of Biological Chemistry, Indian Association for the Cultivation of Science,, Kolkata, India (April 2004 to May 2009 )

  • Project Associate:ChemBiotek Research International Pvt. Ltd.,, Kolkata, India (April 2002 to May 2003 )

Awards & Honours

empty! record not found

Professional Recognitions

empty! record not found