banner_img

Prof. Dipankar Mandal

Professor (Scientist -F)

JRF Position Opening: We are looking for energetic scholars.

Contact Information :

  • *JRF Position Opening: We are looking for a couple of energetic scholars.

    Advanced Functional Materials, Piezo-,Pyro-, Ferroelectric Materials, Development of Mechanical and Thermal Energy Harvesters, Flexible Nanogenerator, Bio-signal Monitoring via Noninvasive Biosensors, AI and ML aided Self-powered Electronics, 3D printing, Nanomaterial Synthesis, Development of Electrospinning Technique for Nanofiber webs, Surface Science.

     

Current Group Members

  • MR. VIKAS KUMAR

    MR. VIKAS KUMAR

    Email: vikas.ph21256@inst.ac.in

    Reg. No.: PH21256

  • MR. SUDIP NASKAR

    MR. SUDIP NASKAR

    Email: sudip.ph21251@inst.ac.in

    Reg. No.: PH21251

  • MS. UTSA SARKAR

    MS. UTSA SARKAR

    Email: utsa.ph21245@inst.ac.in

    Reg. No.: PH21245

  • MR. BIDYA MONDAL

    MR. BIDYA MONDAL

    Email: bidya.ph20240@inst.ac.in

    Reg. No.: PH20240

  • MR. DALIP SAINI

    MR. DALIP SAINI

    Email: dalip.ph20241@inst.ac.in

    Reg. No.: PH20241

  • MR. AJAY KUMAR

    MR. AJAY KUMAR

    Email: ajay.ph19233@inst.ac.in

    Reg. No.: PH19233

  • MR. ANAND BABU

    MR. ANAND BABU

    Email: anand.ph19217@inst.ac.in

    Reg. No.: PH19217

Alumni

  • DR. HARI KRISHNA MISHRA

    DR. HARI KRISHNA MISHRA

    Reg. No.: PH18208

    Designation: PhD Scholar

    Aug 2018 - Aug 2023

  • DR. VARUN GUPTA

    DR. VARUN GUPTA

    Reg. No.: PH18207

    Designation: PhD Scholar

    Aug 2018 - Nov 2023

  • MS. ZINNIA MALLICK

    MS. ZINNIA MALLICK

    Reg. No.: PH18224

    Designation: PhD Scholar

    Jan 2019 - Mar 2024

  • MS. PINKI

    MS. PINKI

    Reg. No.: PH18209

    Designation: PhD Scholar

    Aug 2018 - Mar 2024

  • DR. UJJAL DAS

    DR. UJJAL DAS

    Reg. No.: RA-01-202151

    Designation: Post Docs/RA

    Jan 2022 - Nov 2023

  • 1.

    Molecular dipole regulated surface potential and ferroelectric characteristics in nanoconfined P(VDF-TrFE) architectures , Z. Mallick, R. Sarkar, T. K. Kundu and D. Mandal* , Applied Surface Science , 2024 , 158925 , 646 , 10.1016/j.apsusc.2023.158925
  • 2.

    Surface potential modulation for improved mechanical energy harvesting and sensing in 3D printed biopolymer thermoelectret , D. Saini, A. Kumar, H. K. Mishra, V. Gupta, B. Mondal, Z. Mallick, D. Mandal* , Sensors and Actuators A: Physical , 2024 , 365 , 114858 , 10.1016/j.sna.2023.114858
  • 3.

    Deep Learning Enabled Early Predicting Cardiovascular Status Using Highly Sensitive Piezoelectric Sensor of Solution-Processable Nylon-11 , Anand Babu, Spandan Ranpariya, Dhirendra Kumar Sinha, Arpitam Chatterjee, Dipankar Mandal* , Advanced Materials Technologies , 2023 , 8 , 2202021 , 10.1002/admt.202202021
  • 4.

    Reactive Oxygen Species for Therapeutic Application: Role of Piezoelectric Materials , D Sengupta, S Naskar, D Mandal* , Phys. Chem. Chem. Phys. , 2023 , 25 , 25925-25941 , 10.1039/D3CP01711G
  • 5.

    Insight of the high switching window and data retention in lead-free 2D layered double perovskite resistive memory device , Ujjal Das, Hari Krishna Mishra, Zinnia Mallick, Varun Gupta; Anurag Dehingia, Asim Roy, Dipankar Mandal* , Applied Physics Letters , 2023 , 203505 , 123 , 10.1063/5.0174804
  • 6.

    Control of intrinsic polarity for work function modulation of polyvinylidene fluoride crystalline phases , Ajay Kumar and Dipankar Mandal* , Applied Physics Letters , 2023 , 123 , 121603 , 10.1063/5.0157578
  • 7.

    Physical properties of LaBO3 (B = Mn, Fe, Co) thin films grown on SrTiO3 by pulsed laser deposition technique , B. Satapathy, R. Kaur, A. Kumari, H. K. Mishra, M. Anas, A. Vashist, S. Kumar, D. Mandal, V. Malik, S. Chakraverty , J. Appl. Phys. , 2023 , 145305 , 134 , 10.1063/5.0168035
  • 8.

    Quasi-harmonic approach to evaluate pyroelectric properties in Janus CrSeBr monolayer , Ayushi Jain, Dipankar Mandal, Chandan Ber , J. Phys.: Condens. Matter , 2023 , 35 , 415401 , 10.1088/1361-648X/ace411
  • 9.

    Hydrogen bonding assisted complete ferroelectric β-phase conversion in polyvinylidene fluoride thin film: Exhibiting excellent memory window and long retention , Pinki Malik, Dipanjan Sengupta, Ajay Kumar, Dalip Saini, Dipankar Mandal* , Langmuir , 2023 , 39 , 10511–10520 , 10.1021/acs.langmuir.3c00959
  • 10.

    Deciphering the anisotropic energy harvesting responses of an above room temperature molecular ferroelectric copper(II) complex single crystal , R Halder, A Kumar, D Mandal*, M Shanmugam* , Materials Horizons , 2023 , 6 , 11 , 10.1039/d3mh01336g
  • 11.

    All-Electrospun, Water-resistant, Breathable, Wearable and Stable Metal Halide Perovskite Engineered Electroactive Polymer Textiles for Flexible Piezoelectric Nanogenerator , B. Mondal, R. Sarkar, D. Saini, V. Gupta, T. K. Kundu, D.Mandal * , Advanced Materials Technologies , 2023 , 8 , 2300614 , 10.1002/admt.202300614
  • 12.

    Programmable Polymeric-Interface for Voiceprint Biometrics , A Babu, E Raoul, G Kassahun, I Dufour, D Mandal, D Thuau , Advanced Materials Technologies , 2023 , 12 , 9 , DOI: 10.1002/admt.202301551
  • 13.

    Real-Time Smartphone Charging from Recycled Aluminum Foil–Based Electromagnetic Energy Harvester , Dalip Saini, Ajay Kumar, Hari Krishna Mishra, Varun Gupta, Dipankar Mandal* , Energy Technology , 2023 , 11 , 2300084 , 10.1002/ente.202300084
  • 14.

    Single Material with Multiple Interfaces: A key One Dimensional Barium Titanate Filler for Enhancing Energy Density in Polymer Nanocomposite   , Ajay Kumar, Sudip Naskar, Dipankar Mandal* , Surfaces and Interfaces , 2023 , 38 , 102863 , 10.1016/j.surfin.2023.102863
  • 15.

    Machine Learning Aided All-Organic Air Permeable Piezoelectric Nanogenerator , V. Gupta, A. Kumar, B. Mondal, A. Babu, S. Ranpariya, D. K. Sinha, D. Mandal* , ACS Sustainable Chemistry & Engineering , 2023 , 11 , 6173–6182 , 10.1021/acssuschemeng.2c06779
  • 16.

    Discrete Molecular Copper(II) Complex for Efficient Piezoelectric Energy Harvesting Above Room-Temperature , R Haldar, A Kumar, B Mallick, S Ganguly, D Mandal*, M Shanmugam* , Angew. Chem. Int. Ed. , 2023 , 62 , e202216680 , 10.1002/anie.202216680
  • 17.

    Synergetic H-Bonding and C-T Interaction-Mediated Self-Assembled Structure Results in a Room-Temperature Ferroelectric Material Exhibiting Electric Field-Induced Dipole Switching and Piezo- and Pyroelectric Energy Conversion , Deepak, Zinnia Mallick, Utsa Sarkar, Dipankar Mandal*, and Raj Kumar Roy* , Chem. Mater. , 2023 , 35 , 3316–3328 , 10.1021/acs.chemmater.3c00394
  • 18.

    Deep Learning Enabled Perceptive Wearable Sensor: An Interactive Gadget for Tracking Movement Disorder , Anand Babu, Spandan Ranpariya, Dhirendra Kumar Sinha, Dipankar Mandal* , Advanced Materials Technologies , 2023 , 8 , 2300046 , doi.org/10.1002/admt.202300046
  • 19.

    Long term retention in δ-PVDF thin film prepared by rapid ice quenching technique , Pinki Malik, Varun Gupta, Hari Krishna Mishra, Ajay Kumar, Dipankar Mandal* , J. Apply. Poly. Sci. , 2023 , 140 , e53714 , 10.1002/app.53714
  • 20.

    Injectable Bone Cement Reinforced with Gold Nanodots Decorated rGO-Hydroxyapatite Nanocomposites, Augment Bone Regeneration , V Chopra, J Thomas, S Kaushik, S Rajput, R Guha, B Mondal, S Naskar, D Mandal, G Chauhan, N Chattopadhyay, D Ghosh , Small , 2023 , 19 , 2204637 , 10.1002/smll.202204637
  • 21.

    Bio-piezoelectric phenylalanine-αβ-dehydrophenylalanine nanotubes as potential modalities for combinatorial electrochemotherapy in glioma cells , S. Chibh, N. Aggarwal, Z. Mallick, D Sengupta, P.K. Sachdeva, C. Bera, Y. Yadav, V.S. Chauhan, D. Mandal*, J. J. Panda* , Biomaterials Science , 2023 , 11 , 3469-3485 , 10.1039/D2BM01970A
  • 22.

    All-Organic High-Performance Piezoelectric Nanogenerator with Multilayer Assembled Electrospun Nanofiber Mats for Self-Powered Multifunctional Sensors: , K. Maity , 2018 , 10: 18257−18269 , ACS Appl. Mater. Interfaces (IF~8.0) , 10.1021/acsami.8b01862
  • 23.

    Multifunctional poly(vinylidene fluoride–co-hexafluoropropylene) - zinc stannate nanocomposite for high energy density capacitors and piezo-phototronic switching , Ajay Kumar and Dipankar Mandal* , J. Appl. Poly. Sci. , 203 , e53652 , 140 , 10.1002/app.53652
  • 24.

    Surface Potential Tuned Single Active Material Comprised Triboelectric Nanogenerator for High Performance Voice Recognition Sensor: , A. Babu, P. Malik, N. Das, D. Mandal* , (2022) , 2201331 , Small (IF~15.1) , 10.1002/smll.202201331
  • 25.

    Utilizing Strain-engineered Stable Halide Perovskite for Interfacial Interaction with Molecular Dipoles to Enhance Ferroelectric Switching and Piezoresponse in Polymer Composite Nanofiber: , Z. Mallick, V. Gupta, A. Jain, C. Bera*, and D. Mandal* , (2022) , Langmuir , Langmuir
  • 26.

    Deep Learning Enabled Early Predicting Cardiovascular Status Using Highly Sensitive Piezoelectric Sensor of Solution-Processable Nylon-11: , A. Babu, S. Ranpariya, D. K. Sinha, A. Chatterjee, and D. Mandal* , (2022) , Advanced Materials Technologies , 10.1002/admt.202202021
  • 27.

    3D printed ferroelectret with giant piezoelectric coefficient: , A. Kumar, D. Saini, D. Mandal* , (2022) , 120: 182901 , Appl. Phys. Lett , 10.1063/5.0091808
  • 28.

    All Organic Aqueous Processable Piezo-phototronic Ink for Strain Modulated Photoresponse: , HK Mishra, AK Gillb, V Gupta, P Malik, TK Sinha, D Patra, D Mandal* , (2022) , Advanced Materials Technologies , DOI:0.1002/admt.202201350
  • 29.

    Lead-Free Perovskite Cs3Bi2I9-Derived Electroactive PVDF Composite-Based Piezoelectric Nanogenerators for Physiological Signal Monitoring and Piezo-Phototronic-Aided Strain Modulated Photodet: , B. Mondal, H. K. Mishra, D. Sengupta, A. Kumar, A. Babu, D. Saini, V. Gupta, and D. Mandal* , (2022) , 38: 12157–12172 , Langmuir , 10.1021/acs.langmuir.2c01686
  • 30.

    Piezo-phototronic Effect in Highly Stable Lead-free Double Perovskite Cs2SnI6-PVDF Nanocomposite: Possibility for Strain Modulated Optical Sensor: , Z. Mallick, D. Saini, R. Sarkar, T. K. Kundu, D. Mandal* , (2022) , 100: 107451 , Nano Energy (IF~19.0) , 10.1016/j.nanoen.2022.107451
  • 31.

    Electrical stimulation induced by a piezo-driven triboelectric nanogenerator and electroactive hydrogel composite, accelerate wound repair: , A. Sharma, V. Panwara, B. Mondal, D. Prasher, M. K. Bera, J. Thomas, A. Kumar, N. Kamboj, D. Mandal*, D. Ghosh* , (2022) , 99: 107419 , Nano Energy (IF~19.0) , 10.1016/j.nanoen.2022.107419
  • 32.

    Photochemically Sequestered Off-Pathway Dormant States of Peptide Amphiphiles for Predictive On-Demand Piezoresponsive Nanostructures: , Deepika Gupta, Ashish Bhatt, Varun Gupra,Chirag Miglani, Jojo P. Joseph, Jahanvi Ralhan,Dipankar Mandal*, Md. Ehesan Ali*, Asish Pal* , (2022) , 34: 4456-4470 (IF = 10.5) , Chem Mater , 10.1021/acs.chemmater.2c00228
  • 33.

    Negatively Bias Driven Enhancement in Piezo response for Self-Powered Biomedical and Facial Expression Sensor: , A. Babu, V. Gupta, and D. Mandal* , (2022) , 120: 093701 , Appl. Phys. Lett. , 10.1063/5.0085655
  • 34.

    Revisiting of Delta-PVDF Nanoparticles via Phase Separation with Giant Piezoelectric Response for the Realization of Self-Powered Biomedical Sensors: , H. K. Mishra, V. Gupta, K. Roy, A. Babu, A. Kumar and D. Mandal* , (2022) , 95: 107052 , Nano Energy (IF~19.0) , 10.1016/j.nanoen.2022.107052
  • 35.

    Revisiting Delta-PVDF Piezoelectric Nanogenerator for Self-Powered Pressure Mapping Sensor: , V. Gupta, A. Babu, S. K. Ghosh, Z. Mallick, H. K. Mishra, D. Saini and D. Mandal* , (2021) , 119: 252902 , Appl. Phys. Lett , 10.1063/5.0071625
  • 36.

    Environmental Bacteria Engineered Piezoelectric Bio-organic Energy Harvester towards Clinical Applications: , C. Ghosal, S. K. Ghosh, K. Roy, B. Chattopadhyay and D. Mandal* , (2021) , 93: 106843 , Nano Energy (IF~19.0) , 10.1016/j.nanoen.2021.106843
  • 37.

    Piezo-phototronic Effect in Highly Stable CsPbI3-PVDF Composite for Self-Powered Nanogenerator and Photodetector: , K. Maity, U. Pal, H. K. Mishra, P. Maji, P. Sadhukhan, Z. Mallick, S. Das, B. Mondal and D. Mandal* , (2021) , 95: 107052 , Nano Energy (IF~19.0) , 10.1016/j.nanoen.2021.106743
  • 38.

    Tunable, conductive, self-healing, adhesive and injectable hydrogel for bioelectronics and tissue regeneration applications: , V. Panwar, A. Babu, A. Sharma, J. Thomas, V. Chopra, P. Malik, S. Rajput, M. Mittal, R. Guha, N. Chattopadhyay, D. Mandal, D. Ghosh , (2021) , 9: 6260–6270 , J. Mater. Chem. B (IF~7.5) , doi.org/10.1039/D1TB01075A
  • 39.

    Design of a Self-powered Triboelectric Face Mask: , B. Ghatak, S. Banerjee, Sk B. Ali, R. Bandyopadhyay, N. Das, D. Mandal*, B. Tudu , (2021) , 79: 105387 , Nano Energy (IF~19.0) , doi.org/10.1016/j.nanoen.2020.105387
  • 40.

    All-fiber acousto-electric energy harvester from magnesium salt-modulated PVDF nanofiber: , B. Mahanty; S. K. Ghosh; B. Jana; K. Roy; S. Sarkar; D. Mandal* , (2020) , 5: 1003–1013 , Sustain. Energy Fuels (IF~6.8) , doi.org/10.1039/D0SE01185A
  • 41.

    Temperature–Pressure Hybrid Sensing All-Organic Stretchable Energy Harvester: , S. K. Ghosh, T. K. Sinha, M. Xie, C. R. Bowen, S. Garain, B. Mahanty, K. Roy, K. Henkel, D. Schmeißer, K. J. Kim, D. Mandal* , (2020) , 3: 248–259 , ACS Appl. Electron. Mater. , doi.org/10.1021/acsaelm.0c00816
  • 42.

    Temperature–Pressure Hybrid Sensing All-Organic Stretchable Energy Harvester: , 20. S. K. Ghosh, T. K. Sinha, M. Xie, C. R. Bowen, S. Garain, B. Mahanty, K. Roy, K. Henkel, D. Schmeißer, K. J. Kim, D. Mandal* , (2020) , 3: 248–259 , CS Appl. Electron. Mater. (IF~4.4) , 10.1021/acsaelm.0c00816
  • 43.

    3D MOF Assisted Self-Polarized Ferroelectret: An Effective Auto-Powered Remote Healthcare Monitoring Approach: , K. Roy, S. Jana, S. K. Ghosh, B. Mahanty, Z. Mallick, S. Sarkar, C. Sinha, D. Mandal* , (2020) , 36: 3770–3777 , Langmuir , 10.1021/acs.langmuir.0c01749
  • 44.

    Self-Powered Human-Health Monitoring through Aligned PVDF Nanofibers Interfaced Skin-Interactive Piezoelectric Sensor: , K Maity, S Garain, K Henkel, D Schmeißer, D Mandal* , (2020) , 2: 862-878 , ACS Appl. Polym. Mater. , https://doi.org/10.1021/acsapm.9b00846
  • 45.

    Rollable Magnetoelectric Energy Harvester as Wireless IoT Sensor: , S. K. Ghosh, K. Roy,HK Mishra, MR Sahoo, B Mahanty, PN Vishwakarma, D Mandal* , (2019) , 8: 864–873 , ACS Sustainable Chem. Eng , 10.1021/acssuschemeng.9b05058
  • 46.

    Energy Harvesting and Self-powered Microphone Application on Multifunctional Inorganic-Organic Hybrid Nanogenerator: , D. Mandal and Co-workers , (2019) , 97: 963 – 997 , Energy (IF~4.9) , 10.1016/j.energy.2018.10.124
  • 47.

    Ferroelectret Materials and Devices for Energy Harvesting Applications: , Y. Zhang, C. R. Bowen, S. K. Ghosh , (2019) , 57: 118 – 140 , Nano Energy (IF~13.1) , 10.1016/j.nanoen.2018.12.040
  • 48.

    A Self-powered Wearable Pressure Sensor and Pyroelectric Breathing Sensor Based on GO Interfaced PVDF Nanofibers, ACS Applied Nano Materials: , Mandal and Co-workers , (2019) , 10.1021/acsanm.9b00033
  • 49.

    Organo-lead Halide Perovskite Regulated Green Light Emitting Poly(vinylidene fluoride) Electrospun Nanofiber Mat and its Potential Utility for Ambient Mechanical Energy Harvesting Application: , A. Sultana, Md. M. Alam, P. Sadhukhan, U. K. Ghorai, S. Das, T. R. Middya , (2018) , 49: 380 – 392 , Nano Energy (IF~13.1) , 10.1016/j.nanoen.2018.04.057
  • 50.

    Biomechanical and acoustic energy harvesting from TiO2 nanoparticle modulated PVDF nanofiber made high performance nanogenerator: , Md. M. M. Alam, A. Sultana, D. Sarkar , (2018) , 1 (7): 3103–3112 , ACS Appl. Energy Mater. , 10.1021/acsaem.8b00216
  • 51.

    A Pyroelectric Generator as a Self-powered Temperature Sensor for Sustainable Thermal Energy Harvesting from Waste Heat and Human Body Heat: , A. Sultana, Md. M. Alam, T. R. Middya , (2018) , 221: 299 – 307 , Applied Energy (IF~7.9) , 10.1016/j.apenergy.2018.04.003
  • 52.

    Organo-Lead Halide Perovskite Induced Electroactive β-Phase in Porous PVDF Films: An Excellent Material for Photoactive Piezoelectric Energy Harvester and Photodetector: , A. Sultana, P. Sadhukhan, Md. M. M. Alam, S. Das, T. R. Middya , (2018) , 10: 4121–4130 , ACS Appl. Mater. Interfaces (IF~8.0) , 10.1021/acsami.7b17408
  • 53.

    An Efficient Wind Energy Harvester of Paper Ash-Mediate Rapidly Synthesized ZnO Nanoparticle-Interfaced Electrospun PVDF Fiber: , Md. M. M. Alam, S. K. Ghosh, A. Sultana , (2018) , 6: 292–299 , ACS Sustainable Chem. Eng.(IF~6.1) , 10.1021/acssuschemeng.7b02441
  • 54.

    Natural Sugar Assisted Chemically Reinforced Highly Durable Piezo-Organic Nanogenerator with Superior Power Density for Self-Powered Wearable Electronics: , K. Maity, S. Garain, K. Henkel, D. Schmeißer , (2018) , 10: 44018–4403 , ACS Appl. Mater. Interfaces (IF~8.0) , 10.1021/acsami.8b15320
  • 55.

    A hybrid strain and thermal energy harvester based on an infra-red sensitive Er3+ modified poly(vinylidene fuoride) ferroelectret structure: , K. Ghosh, M. Xie, C. R. Bowen, P.R. Davies, D.J. Morgan , (2017) , 7: 16703 , Scientific Reports , 10.1038/s41598-017-16822-3.
  • 56.

    Bio-assembled, piezoelectric prawn shell made self-powered wearable sensor for non-invasive physiological signal monitoring: , S. K. Ghosh , (2017) , 110 (12): 123701 , Appl. Phys. Letter. , 10.1063/1.4979081
  • 57.

    Electrospun gelatin nanofiber based self-powered Bio-e-Skin for health care monitoring: , S. K. Ghosh, P. Adhikary, S. Jana, A. Biswas, V. Sencadas, S. D. Gupta, B. Tudu , (2017) , 36: 166 , Nano Energy , 10.1016/j.nanoen.2017.04.028
  • 58.

    An effective wind energy harvester by paper-ash mediated rapid synthesized ZnO nano-particle interfaced electrospun PVDF fiber: , Md. M. Alam, S. K. Ghosh, A. Sultana , (2017) , (IF~5.9) , ACS Sustainable Chem. Eng. , 10.1021/acssuschemeng.7b02441
  • 59.

    A hybrid strain and thermal energy harvester based on an infra-red sensitive Er3+ modified poly(vinylidene fluoride) ferroelectret structure: , S. K. Ghosh, M. Xie, C. R. Bowen, P. R. Davies, D. J. Morgan , (2017) , 7: 16703 , Scientific Reports (IF~4.1) , 10.1038/s41598-017-16822-3
  • 60.

    Improved dielectric constant and breakdown strength of γ-phase dominant super toughened polyvinylidene fluoride/TiO2 nanocomposite film: an excellent material for energy storage applications : , Md. M. Alam, S. K. Ghosh, D. Sarkar, S. Sen , (2017) , 28: 015503 , Nanotechnology , 10.1088/0957-4484/28/1/015503
  • 61.

    Sustainable energy generation from piezoelectric biomaterial for noninvasive physiological signal monitoring: , S. K. Ghosh , (2017) , 5: 8836–8843 , ACS Sustainable Chem. Eng. , 10.1021/acssuschemeng.7b01617
  • 62.

    Human skin interactive self-powered wearable piezoelectric bio-e-skin by electrospun poly-L-lactic acid nanofibers for non-invasive physiological signal monitoring, , A. Sultana, S. K. Ghosh, V. Sencadas, T. Zheng, M. J Higgins, T. R. Middya , (2017) , 5: 7352–7359 , J. Mater. Chem. B , 10.1039/C7TB01439B
  • 63.

    Two-dimensional piezoelectric MoS2-modulated nanogenerator and nanosensor made of poly(vinlydine fluoride) nanofiber webs for self-powered electronics and robotics,: , K. Maity, B. Mahanty, T. K. Sinha, S. Garain, A. Biswas, S. K. Ghosh, S. Manna, S. K. Ray* , (2017) , 5(2): 234–243 , Energy Technology , 10.1002/ente.201600419
  • 64.

    Synergistically enhanced piezoelectric output in highly aligned 1D polymer nanofibers integrated all-fiber nanogenerator for wearable nano-tactile sensor: , S. K. Ghosh , ( 2018) , 53: 245 – 257 , Nano Energy (IF~13.1) , 10.1016/j.nanoen.2018.08.036
  • 1.

    Biodegradable Nanocomposites for Energy Harvesting, Self-healing and Shape memory, Smart Polymer Nanocomposites, Springer Series on Polymer and Composite Materials,: , ISBN: 978-3-319-50424-7 , (2017)
  • 2.

    Book Ch.8: Flexible Nanogenerator and Nano-Pressure Sensor Based on Nanofiber Web of PVDF and its Copolymers: , WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim , Germany , (2013)
  • 3.

    Ultra-thin Films of a Ferroelectric Copolymer: , Lambert Academic Publishing, Germany , (2012)
  • 4.

    Book Ch.21: Microscopic and Spectroscopic Characterization of Interfaces and Dielectric Layers for OFET Devices: , WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Germany , (2009)
  • 1. Preparation Method Of Electroconductive Nanofiber Through Electrospinning Followed By Electroless Plating: , K. J. Kim, S. Yoon , 10-1079775
  • 2. Electrostatic Capacitance-type Nano Generator Using Piezoelectric Nanofiber Web: , K. J. Kim, S. Yoon , 10-1248415
  • 1.

    Human Skin Interactive Self-powered Piezoelectric e-skin based on PVDF/MWCNT Electrospun Nanofibers for Non-invasive Health Care Monitoring: , B. Mahanty, K. Maity, S. Sarkar , (2019) , Material Today: Proceedings
  • 2.

    The Nucleation of Self-poled Electroactive β-phase in Eu3+ Doped PVDF Nanocomposite Film for Optoelectronic Devices: , K. Maity , (2018) , 1942: 050088 , AIP Conference Proceedings
  • 3.

    CdS Decorated rGO Containing PVDF Electrospun Fiber Based Piezoelectric Nanogenerator for Mechanical Energy Harvesting Application: , K. Roy , (2018) , 1942: 050125 , AIP Conference Proceedings
  • 4.

    Self-Powered Piezoelectric Nanogenerator Based on Wurtzite ZnO Nanoparticles for Energy Harvesting Application, Materials: , W. Rahman, S. Garain, A. Sultana, T. R. Middya , (2018) , 5: 9826 – 9830
  • 5.

    Enhancement of Electroactive β-phase and Superior Dielectric Properties in Cerium Based Poly(vinylidene fluoride) Composite Films, Materials: , S. Garain, S. Sen, K. Henkel, D. Schmeißer , (2018) , 5: 10084 – 10090
  • 6.

    The Inclusion of Electroactive β-phase in Sn2+ Incorporated PVDF Composite Film for Improving Dielectric Properties and Piezoelectric Energy Generation: , Md. M. Alam , (2018) , 1942: 140057 , AIP Conference Proceedings
  • 7.

    All-fiber Pyroelectric Nanogenerator: , S.K. Ghosh, M. Xie, C. R. Bowen , (2018) , 1942: 140025 , AIP Conference Proceedings
  • 8.

    ZnS-paper Based Flexible Piezoelectric Nanogenerator: , A. Sultana, T. R. Middya , (2018) , 1942: 120018 , AIP Conference Proceedings
  • 9.

    Enhanced Mechanical Energy Harvesting Ability of Electrospun Poly(vinylidene fluoride)/Hectorite Clay Nanocomposites: , W. Rahman, S. K. Ghosh, T. R. Middya , (2018) , 1942: 050081 , AIP Conference Proceedings
  • 10.

    The Preparation of γ-Poly(vinylidene fluoride)/ZnS Nanocomposite for Energy Storage Application, Materials: , A. Sultana, Md. M. Alam, T. R. Middya, S. Sen , (2018) , 5: 10091–10096
  • 11.

    Fabrication of Lead Free Flexible Electrospun Hybrid Nanofibers for Designing Mechanical Energy Harvester: , M. M. Alam , (2017) , 1832: 050169 , AIP Conf. Proc
  • 12.

    In situ Synthesis of Bismuth Oxide Nanorods and Fabrication of Self-poled PVDF Nanogenerator for Mechanical Energy Harvesting: , A. Biswas, S. Garain , (2017) , 1832: 040024. , AIP Conf. Proc
  • 13.

    P(VDF-HFP)/Cerium Composite Films with Improved Dielectric Properties for Energy Storage Applications: , P. Adhikary, S. Garain , (2017) , 1832: 040025 , AIP Conf. Proc
  • 14.

    Cost Effective-High Performance Inorganic-Organic Hybrid Nanogenerator: , B. Mahanty, S. Garain, S. K. Ghosh , (2016) , 22: 184-187 , Advanced Science Letters
  • 15.

    Self-Powered Flexible Electronics Based on Self Poled “Ferroelectretic” Nanogenerator” MRS Advances: , S. K. Ghosh , (2016) , 10.1557/adv.2016.319
  • 16.

    No Interfacial Layer for PEDOT Electrodes on PVDF: Characterization of Reactions at the Interface P(VDF/TrFE)/Al and P(VDF/TrFE)/PEDOT: PSS, Materials Research Society Symposium Proceedings , K. Müller, D. Schmeißer , (2007) , 997: I06-02

  • Top 2% Most Influen Scientist in 2023 (As per Standford University survey)

    ITS (SERB, Govt. of India) (2015 and 2019) 

    INSA Visiting Scientist (2016)

    INDIA Top Cited Author Award 2019 (from IOP Publishing)

    INDIA Top Cited Author Award 2020 (from IOP Publishing)

    Top 3% Highly Cited ACS Authors 2019-2020 from India

    Young Carrier Award (DST)

    ACS editorial press release (Aug., 12, 2015): 
    Flexible, biodegradable device can generate power from touch (video)
    https://www.acs.org/content/acs/en/pressroom/presspacs/2015/acs-presspac-august-12-2015/flexible-biodegradable-device-can-generate-power-from-touch-video.html

    ACS editorial press release (January 27, 2016): Cellulose nanogenerators could one day power implanted biomedical devices

    https://www.acs.org/content/acs/en/pressroom/presspacs/2016/acs-presspac-january-27-2016/cellulose-nanogenerators-could-one-day-power-implanted-biomedical-devices.html

    AIP Editorial press release (Sept., 2, 2016):
    Fish ‘Biowaste’ Converted to Piezoelectric Energy Harvesters
    https://publishing.aip.org/publications/latest-content/fish-biowaste-converted-to-piezoelectric-energy-harvesters

  • Assistant Professor:  Department of Physics, Jadavpur University, India (April 2008 to October 2017 )

    Postdoctoral Researcher:  Kyung Hee University,, South Korea (August 2009 to July 2017 )

    Scientific assistant:  BTU Cottbus,, Germany (December 2005 to March 2008 )

Loading...