Faculty Directory

Dr. Dipankar Mandal

Associate Professor (Scientist E)

Research Interest:

Advanced Functional Materials, Piezo-,Pyro-, Ferroelectric Materials, Development of Mechanical and Thermal Energy Harvesters, Flexible Nanogenerator, Bio-signal Monitoring via Noninvasive Biosensors, AI and ML aided Self-powered Electronics, 3D printing, Nanomaterial Synthesis, Development of Electrospinning Technique for Nanofiber webs, Rare-earth Doped Glass, Surface Science.

CONTACT INFORMATION :

Research Interest

  • PENG, TENG, 3D Printing, e-Skin, Nanofiber based sensors, Health-care monitoring, ferro-, piezo- and pyro-electric materials (synthesis to prototype development) 


Research Highlights

empty! record not found

PhD Students

  • MR. SUDIP NASKAR

    Email: sudip.ph21251@inst.ac.in

    Reg. No.: PH21251

    Working Since Jan, 2022
  • MR. Utsa Sarkar

    Email: utsa.ph21245@inst.ac.in

    Reg. No.: PH21245

    Working Since Jan, 2022
  • MR. BIDYA MONDAL

    Email: bidya.ph20240@inst.ac.in

    Reg. No.: PH20240

    Working Since Aug, 2020
  • MR. DALIP SAINI

    Email: dalip.ph20241@inst.ac.in

    Reg. No.: PH20241

    Working Since Aug, 2020
  • Mr. Hari Krishna Mishra

    Email: hari.ph18208@inst.ac.in

    Reg. No.: PH18208

    Working Since Aug, 2018
  • Mr. Varun Gupta

    Email: varun.ph18207@inst.ac.in

    Reg. No.: PH18207

    Working Since Aug, 2018
  • Ms. Zinnia Mallick

    Email: zinnia.ph18224@inst.ac.in

    Reg. No.: PH18224

    Working Since Jan, 2019
  • Mr. Ajay Kumar

    Email: ajay.ph19233@inst.ac.in

    Reg. No.: PH19233

    Working Since Jan, 2020
  • Ms. Pinki

    Email: pinki.ph18209@inst.ac.in

    Reg. No.: PH18209

    Working Since Aug, 2018
  • Mr. Anand Babu

    Email: anand.ph19217@inst.ac.in

    Reg. No.: PH19217

    Working Since Aug, 2019

Research Associates

  • DR. UJJAL DAS

    Email: ujjal.ra202151@inst.ac.in

    Reg. No.: RA-01-202151

    Working Since Jan, 2022

empty! record not found

  1. 3D printed ferroelectret with giant piezoelectric coefficient: A. Kumar, D. Saini, D. Mandal*, (2022) Appl. Phys. Lett., 120: 182901. DOI: 10.1063/5.0091808

  2. Lead-Free Perovskite Cs3Bi2I9-Derived Electroactive PVDF Composite-Based Piezoelectric Nanogenerators for Physiological Signal Monitoring and Piezo-Phototronic-Aided Strain Modulated Photodet: B. Mondal, H. K. Mishra, D. Sengupta, A. Kumar, A. Babu, D. Saini, V. Gupta, and D. Mandal*, (2022) Langmuir, 38: 12157–12172. DOI: 10.1021/acs.langmuir.2c01686

  3. Piezo-phototronic Effect in Highly Stable Lead-free Double Perovskite Cs2SnI6-PVDF Nanocomposite: Possibility for Strain Modulated Optical Sensor: Z. Mallick, D. Saini, R. Sarkar, T. K. Kundu, D. Mandal*, (2022) Nano Energy (IF~19.0), 100: 107451. DOI: 10.1016/j.nanoen.2022.107451

  4. Electrical stimulation induced by a piezo-driven triboelectric nanogenerator and electroactive hydrogel composite, accelerate wound repair: A. Sharma, V. Panwara, B. Mondal, D. Prasher, M. K. Bera, J. Thomas, A. Kumar, N. Kamboj, D. Mandal*, D. Ghosh*, (2022) Nano Energy (IF~19.0), 99: 107419. DOI: 10.1016/j.nanoen.2022.107419

  5. Photochemically Sequestered Off-Pathway Dormant States of Peptide Amphiphiles for Predictive On-Demand Piezoresponsive Nanostructures: Deepika Gupta, Ashish Bhatt, Varun Gupra,Chirag Miglani, Jojo P. Joseph, Jahanvi Ralhan,Dipankar Mandal*, Md. Ehesan Ali*, Asish Pal*, (2022) Chem Mater, 34: 4456-4470 (IF = 10.5). DOI: 10.1021/acs.chemmater.2c00228

  6. Surface Potential Tuned Single Active Material Comprised Triboelectric Nanogenerator for High Performance Voice Recognition Sensor: A. Babu, P. Malik, N. Das, D. Mandal*, (2022) Small (IF~15.1), 2201331. DOI: 10.1002/smll.202201331

  7. Negatively Bias Driven Enhancement in Piezo response for Self-Powered Biomedical and Facial Expression Sensor: A. Babu, V. Gupta, and D. Mandal*, (2022) Appl. Phys. Lett., 120: 093701. DOI: 10.1063/5.0085655

  8. Revisiting of Delta-PVDF Nanoparticles via Phase Separation with Giant Piezoelectric Response for the Realization of Self-Powered Biomedical Sensors: H. K. Mishra, V. Gupta, K. Roy, A. Babu, A. Kumar and D. Mandal*, (2022) Nano Energy (IF~19.0), 95: 107052. DOI: 10.1016/j.nanoen.2022.107052

  9. Revisiting Delta-PVDF Piezoelectric Nanogenerator for Self-Powered Pressure Mapping Sensor: V. Gupta, A. Babu, S. K. Ghosh, Z. Mallick, H. K. Mishra, D. Saini and D. Mandal*, (2021) Appl. Phys. Lett., 119: 252902. DOI: 10.1063/5.0071625

  10. Environmental Bacteria Engineered Piezoelectric Bio-organic Energy Harvester towards Clinical Applications: C. Ghosal, S. K. Ghosh, K. Roy, B. Chattopadhyay and D. Mandal*, (2021) Nano Energy (IF~19.0), 93: 106843. DOI: 10.1016/j.nanoen.2021.106843

  11. Piezo-phototronic Effect in Highly Stable CsPbI3-PVDF Composite for Self-Powered Nanogenerator and Photodetector: K. Maity, U. Pal, H. K. Mishra, P. Maji, P. Sadhukhan, Z. Mallick, S. Das, B. Mondal and D. Mandal*, (2021) Nano Energy (IF~19.0), 95: 107052. DOI: 10.1016/j.nanoen.2021.106743

  12. Tunable, conductive, self-healing, adhesive and injectable hydrogel for bioelectronics and tissue regeneration applications: V. Panwar, A. Babu, A. Sharma, J. Thomas, V. Chopra, P. Malik, S. Rajput, M. Mittal, R. Guha, N. Chattopadhyay, D. Mandal, D. Ghosh, (2021) J. Mater. Chem. B (IF~7.5), 9: 6260–6270. DOI: doi.org/10.1039/D1TB01075A

  13. Design of a Self-powered Triboelectric Face Mask: B. Ghatak, S. Banerjee, Sk B. Ali, R. Bandyopadhyay, N. Das, D. Mandal*, B. Tudu, (2021) Nano Energy (IF~19.0), 79: 105387. DOI: doi.org/10.1016/j.nanoen.2020.105387

  14. All-fiber acousto-electric energy harvester from magnesium salt-modulated PVDF nanofiber: B. Mahanty; S. K. Ghosh; B. Jana; K. Roy; S. Sarkar; D. Mandal*, (2020) Sustain. Energy Fuels (IF~6.8), 5: 1003–1013. DOI: doi.org/10.1039/D0SE01185A

  15. Temperature–Pressure Hybrid Sensing All-Organic Stretchable Energy Harvester: 20. S. K. Ghosh, T. K. Sinha, M. Xie, C. R. Bowen, S. Garain, B. Mahanty, K. Roy, K. Henkel, D. Schmeißer, K. J. Kim, D. Mandal*, (2020) ACS Appl. Electron. Mater. (IF~4.4), 3: 248–259. DOI: 10.1021/acsaelm.0c00816

  16. Temperature–Pressure Hybrid Sensing All-Organic Stretchable Energy Harvester: S. K. Ghosh, T. K. Sinha, M. Xie, C. R. Bowen, S. Garain, B. Mahanty, K. Roy, K. Henkel, D. Schmeißer, K. J. Kim, D. Mandal*,, (2020) ACS Appl. Electron. Mater., 3: 248–259. DOI: doi.org/10.1021/acsaelm.0c00816

  17. 3D MOF Assisted Self-Polarized Ferroelectret: An Effective Auto-Powered Remote Healthcare Monitoring Approach: K. Roy, S. Jana, S. K. Ghosh, B. Mahanty, Z. Mallick, S. Sarkar, C. Sinha, D. Mandal*, (2020) Langmuir, 36: 3770–3777. DOI: 10.1021/acs.langmuir.0c01749

  18. Self-Powered Human-Health Monitoring through Aligned PVDF Nanofibers Interfaced Skin-Interactive Piezoelectric Sensor: K Maity, S Garain, K Henkel, D Schmeißer, D Mandal*, (2020) ACS Appl. Polym. Mater., 2: 862-878. DOI: https://doi.org/10.1021/acsapm.9b00846

  19. A Self-powered Wearable Pressure Sensor and Pyroelectric Breathing Sensor Based on GO Interfaced PVDF Nanofibers, ACS Applied Nano Materials: D. Mandal and Co-workers, (2019) . DOI: 10.1021/acsanm.9b00033

  20. Ferroelectret Materials and Devices for Energy Harvesting Applications: Y. Zhang, C. R. Bowen, S. K. Ghosh, (2019) Nano Energy (IF~13.1), 57: 118 – 140. DOI: 10.1016/j.nanoen.2018.12.040

  21. Energy Harvesting and Self-powered Microphone Application on Multifunctional Inorganic-Organic Hybrid Nanogenerator: D. Mandal and Co-workers, (2019) Energy (IF~4.9), 97: 963 – 997. DOI: 10.1016/j.energy.2018.10.124

  22. Rollable Magnetoelectric Energy Harvester as Wireless IoT Sensor: S. K. Ghosh, K. Roy,HK Mishra, MR Sahoo, B Mahanty, PN Vishwakarma, D Mandal*, (2019) ACS Sustainable Chem. Eng., 8: 864–873. DOI: 10.1021/acssuschemeng.9b05058

  23. Biomechanical and acoustic energy harvesting from TiO2 nanoparticle modulated PVDF nanofiber made high performance nanogenerator: Md. M. M. Alam, A. Sultana, D. Sarkar, (2018) ACS Appl. Energy Mater., 1 (7): 3103–3112. DOI: 10.1021/acsaem.8b00216

  24. An Efficient Wind Energy Harvester of Paper Ash-Mediate Rapidly Synthesized ZnO Nanoparticle-Interfaced Electrospun PVDF Fiber: Md. M. M. Alam, S. K. Ghosh, A. Sultana, (2018) ACS Sustainable Chem. Eng.(IF~6.1), 6: 292–299. DOI: 10.1021/acssuschemeng.7b02441

  25. Organo-Lead Halide Perovskite Induced Electroactive β-Phase in Porous PVDF Films: An Excellent Material for Photoactive Piezoelectric Energy Harvester and Photodetector: A. Sultana, P. Sadhukhan, Md. M. M. Alam, S. Das, T. R. Middya, (2018) ACS Appl. Mater. Interfaces (IF~8.0), 10: 4121–4130. DOI: 10.1021/acsami.7b17408

  26. A Pyroelectric Generator as a Self-powered Temperature Sensor for Sustainable Thermal Energy Harvesting from Waste Heat and Human Body Heat: A. Sultana, Md. M. Alam, T. R. Middya, (2018) Applied Energy (IF~7.9), 221: 299 – 307. DOI: 10.1016/j.apenergy.2018.04.003

  27. All-Organic High-Performance Piezoelectric Nanogenerator with Multilayer Assembled Electrospun Nanofiber Mats for Self-Powered Multifunctional Sensors: K. Maity, (2018) ACS Appl. Mater. Interfaces (IF~8.0), 10: 18257−18269. DOI: 10.1021/acsami.8b01862

  28. Organo-lead Halide Perovskite Regulated Green Light Emitting Poly(vinylidene fluoride) Electrospun Nanofiber Mat and its Potential Utility for Ambient Mechanical Energy Harvesting Application: A. Sultana, Md. M. Alam, P. Sadhukhan, U. K. Ghorai, S. Das, T. R. Middya, (2018) Nano Energy (IF~13.1), 49: 380 – 392. DOI: 10.1016/j.nanoen.2018.04.057

  29. Synergistically enhanced piezoelectric output in highly aligned 1D polymer nanofibers integrated all-fiber nanogenerator for wearable nano-tactile sensor: S. K. Ghosh, (2018) Nano Energy (IF~13.1), 53: 245 – 257. DOI: 10.1016/j.nanoen.2018.08.036

  30. Natural Sugar Assisted Chemically Reinforced Highly Durable Piezo-Organic Nanogenerator with Superior Power Density for Self-Powered Wearable Electronics: K. Maity, S. Garain, K. Henkel, D. Schmeißer, (2018) ACS Appl. Mater. Interfaces (IF~8.0), 10: 44018–4403. DOI: 10.1021/acsami.8b15320

  31. Human skin interactive self-powered wearable piezoelectric bio-e-skin by electrospun poly-L-lactic acid nanofibers for non-invasive physiological signal monitoring,: A. Sultana, S. K. Ghosh, V. Sencadas, T. Zheng, M. J Higgins, T. R. Middya, (2017) J. Mater. Chem. B, 5: 7352–7359. DOI: 10.1039/C7TB01439B

  32. Sustainable energy generation from piezoelectric biomaterial for noninvasive physiological signal monitoring: S. K. Ghosh, (2017) ACS Sustainable Chem. Eng., 5: 8836–8843. DOI: 10.1021/acssuschemeng.7b01617

  33. Improved dielectric constant and breakdown strength of γ-phase dominant super toughened polyvinylidene fluoride/TiO2 nanocomposite film: an excellent material for energy storage applications : Md. M. Alam, S. K. Ghosh, D. Sarkar, S. Sen, (2017) Nanotechnology, 28: 015503. DOI: 10.1088/0957-4484/28/1/015503

  34. A hybrid strain and thermal energy harvester based on an infra-red sensitive Er3+ modified poly(vinylidene fuoride) ferroelectret structure: K. Ghosh, M. Xie, C. R. Bowen, P.R. Davies, D.J. Morgan, (2017) Scientific Reports, 7: 16703. DOI: 10.1038/s41598-017-16822-3.

  35. An effective wind energy harvester by paper-ash mediated rapid synthesized ZnO nano-particle interfaced electrospun PVDF fiber: Md. M. Alam, S. K. Ghosh, A. Sultana, (2017) ACS Sustainable Chem. Eng., (IF~5.9): . DOI: 10.1021/acssuschemeng.7b02441

  36. Electrospun gelatin nanofiber based self-powered Bio-e-Skin for health care monitoring: S. K. Ghosh, P. Adhikary, S. Jana, A. Biswas, V. Sencadas, S. D. Gupta, B. Tudu, (2017) Nano Energy, 36: 166. DOI: 10.1016/j.nanoen.2017.04.028

  37. Bio-assembled, piezoelectric prawn shell made self-powered wearable sensor for non-invasive physiological signal monitoring: S. K. Ghosh, (2017) Appl. Phys. Letter., 110 (12): 123701. DOI: 10.1063/1.4979081

  38. A hybrid strain and thermal energy harvester based on an infra-red sensitive Er3+ modified poly(vinylidene fluoride) ferroelectret structure: S. K. Ghosh, M. Xie, C. R. Bowen, P. R. Davies, D. J. Morgan, (2017) Scientific Reports (IF~4.1), 7: 16703. DOI: 10.1038/s41598-017-16822-3

  39. Two-dimensional piezoelectric MoS2-modulated nanogenerator and nanosensor made of poly(vinlydine fluoride) nanofiber webs for self-powered electronics and robotics,: K. Maity, B. Mahanty, T. K. Sinha, S. Garain, A. Biswas, S. K. Ghosh, S. Manna, S. K. Ray*, (2017) Energy Technology, 5(2): 234–243. DOI: 10.1002/ente.201600419

  1. Envisioned Strategy for Early Intervention in Virus Suspected Patients through Non-invasive Piezo- and pyro-electric Based Wearable Sensors: S. K. Ghosh and D. Mandal*, (2020) J. Mat. Chem. A (IF~14.5) (Perspective article), 9: 1887–1909. DOI: doi.org/10.1039/D0TA08547B

  1. Biodegradable Nanocomposites for Energy Harvesting, Self-healing and Shape memory, Smart Polymer Nanocomposites, Springer Series on Polymer and Composite Materials,: ISBN: 978-3-319-50424-7., (2017) .

  2. Book Ch.8: Flexible Nanogenerator and Nano-Pressure Sensor Based on Nanofiber Web of PVDF and its Copolymers: WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim , Germany., (2013) .

  3. Ultra-thin Films of a Ferroelectric Copolymer: P(VDF-TrFE): ISBN: 978-3-659-14195-9: Lambert Academic Publishing, Germany., (2012) .

  4. Book Ch.21: Microscopic and Spectroscopic Characterization of Interfaces and Dielectric Layers for OFET Devices: WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Germany, (2009) .

  1. Electrostatic Capacitance-Type Nano Generator Using Piezoelectric Nanofiber Web: Korean Patent, 10-1248415 K. J. Kim, S. Yoon, (2013) .

  2. Preparation Method of Electroconductive Nanofiber through Electrospinning followed by Electroless Plating: Korean Patent 10-1079775 K. J. Kim, S. Yoon, (2010) .

  1. Human Skin Interactive Self-powered Piezoelectric e-skin based on PVDF/MWCNT Electrospun Nanofibers for Non-invasive Health Care Monitoring: B. Mahanty, K. Maity, S. Sarkar, (2019) Material Today: Proceedings, Ms. Ref. No.: MTP-32R1: .

  2. Enhancement of Electroactive β-phase and Superior Dielectric Properties in Cerium Based Poly(vinylidene fluoride) Composite Films, Materials: S. Garain, S. Sen, K. Henkel, D. Schmeißer, (2018) 5: 10084 – 10090.

  3. Enhanced Mechanical Energy Harvesting Ability of Electrospun Poly(vinylidene fluoride)/Hectorite Clay Nanocomposites: W. Rahman, S. K. Ghosh, T. R. Middya, (2018) AIP Conference Proceedings, 1942: 050081.

  4. ZnS-paper Based Flexible Piezoelectric Nanogenerator: A. Sultana, T. R. Middya, (2018) AIP Conference Proceedings, 1942: 120018.

  5. All-fiber Pyroelectric Nanogenerator: S.K. Ghosh, M. Xie, C. R. Bowen, (2018) AIP Conference Proceedings, 1942: 140025.

  6. The Inclusion of Electroactive β-phase in Sn2+ Incorporated PVDF Composite Film for Improving Dielectric Properties and Piezoelectric Energy Generation: Md. M. Alam, (2018) AIP Conference Proceedings, 1942: 140057.

  7. Self-Powered Piezoelectric Nanogenerator Based on Wurtzite ZnO Nanoparticles for Energy Harvesting Application, Materials: W. Rahman, S. Garain, A. Sultana, T. R. Middya, (2018) 5: 9826 – 9830.

  8. The Preparation of γ-Poly(vinylidene fluoride)/ZnS Nanocomposite for Energy Storage Application, Materials: A. Sultana, Md. M. Alam, T. R. Middya, S. Sen, (2018) 5: 10091–10096.

  9. CdS Decorated rGO Containing PVDF Electrospun Fiber Based Piezoelectric Nanogenerator for Mechanical Energy Harvesting Application: K. Roy, (2018) AIP Conference Proceedings, 1942: 050125.

  10. The Nucleation of Self-poled Electroactive β-phase in Eu3+ Doped PVDF Nanocomposite Film for Optoelectronic Devices: K. Maity, (2018) AIP Conference Proceedings, 1942: 050088.

  11. P(VDF-HFP)/Cerium Composite Films with Improved Dielectric Properties for Energy Storage Applications: P. Adhikary, S. Garain, (2017) AIP Conf. Proc, 1832: 040025.

  12. In situ Synthesis of Bismuth Oxide Nanorods and Fabrication of Self-poled PVDF Nanogenerator for Mechanical Energy Harvesting: A. Biswas, S. Garain, (2017) AIP Conf. Proc., 1832: 040024.

  13. Fabrication of Lead Free Flexible Electrospun Hybrid Nanofibers for Designing Mechanical Energy Harvester: M. M. Alam, (2017) AIP Conf. Proc, 1832: 050169.

  14. Self-Powered Flexible Electronics Based on Self Poled “Ferroelectretic” Nanogenerator” MRS Advances: S. K. Ghosh, (2016) . DOI: 10.1557/adv.2016.319.

  15. Cost Effective-High Performance Inorganic-Organic Hybrid Nanogenerator: B. Mahanty, S. Garain, S. K. Ghosh, (2016) Advanced Science Letters, 22: 184-187.

  16. No Interfacial Layer for PEDOT Electrodes on PVDF: Characterization of Reactions at the Interface P(VDF/TrFE)/Al and P(VDF/TrFE)/PEDOT: PSS, Materials Research Society Symposium Proceedings K. Müller, D. Schmeißer, (2007) 997: I06-02.

Fundings

empty! record not found

  • 2008

    Ph.D

    Brandenburgische Technische Universität Cottbus, Germany

  • 2004

    M.Tech

    Materials Science and Engg.– IIT Kharagpur India

  • 2002

    M.Sc

    Physics – Jadavpur University, India

  • 2000

    B.Sc

    Physics Hons. – Burdwan University, India

  • Assistant Professor:Department of Physics, Jadavpur University, India (April 2008 to October 2017 )

  • Postdoctoral Researcher:Kyung Hee University,, South Korea (August 2009 to July 2017 )

  • Scientific assistant:BTU Cottbus,, Germany (December 2005 to March 2008 )

Awards & Honours

  • ITS (SERB, Govt. of India) (2015 and 2019) 

  • INSA Visiting Scientist (2016)

  • INDIA Top Cited Author Award 2019 (from IOP Publishing)

  • INDIA Top Cited Author Award 2020 (from IOP Publishing)

  • Top 3% Highly Cited ACS Authors 2019-2020 from India

  • Young Carrier Award (DST) (2019)

Professional Recognitions

  • ACS editorial press release (Aug., 12, 2015): 
    Flexible, biodegradable device can generate power from touch (video)
    https://www.acs.org/content/acs/en/pressroom/presspacs/2015/acs-presspac-august-12-2015/flexible-biodegradable-device-can-generate-power-from-touch-video.html

     

  • ACS editorial press release (January 27, 2016): Cellulose nanogenerators could one day power implanted biomedical devices

    https://www.acs.org/content/acs/en/pressroom/presspacs/2016/acs-presspac-january-27-2016/cellulose-nanogenerators-could-one-day-power-implanted-biomedical-devices.html

  • AIP Editorial press release (Sept., 2, 2016):
    Fish ‘Biowaste’ Converted to Piezoelectric Energy Harvesters
    https://publishing.aip.org/publications/latest-content/fish-biowaste-converted-to-piezoelectric-energy-harvesters