Faculty Directory

Dr. Asifkhan Shanavas

Scientist-C

Targeted combinatorial nanomedicines, Organo-Inorganic Biomaterials for Theranostics, Plasmonic nanomaterials for Photothermal Therapy

CONTACT INFORMATION :

Research Interest

  • 1) Combinatorial nanomedicines: Cancer patients undergo vigorous combination chemotherapeutic protocols. Due to variations in pharmacokinetics, membrane transport and biodistribution properties of different chemotherapeutics, dosage and optimization of drug scheduling become highly difficult. Combination nanomedicines offer vehicle uniformity, ratiometric drug loading with temporal site-specific release of the drugs. Our group investigates polymeric core-shell nanoparticles for compartmentalization and sequential release of two or more chemotherapeutics.

    2) Organo-Inorganic Biomaterials for Theranostics: Multifunctional biomaterials offer a ‘One for All’ approach towards precise in vivo detection and subsequent treatment of solid tumors. Our group investigates organo-inorganic composite biomaterials for simultaneous therapy and imaging of cancerous tissues.

    3) Plasmonic nanomaterials for Photothermal Therapy: Cancer drug resistance is an evolving paradigm that is interconnected with a multitude of signaling pathways regulating cell survival, growth and proliferation. Gold-based anisotropic nanostructures such as nanoshells have shown huge success in combating resistant tumors. With better engineering of these nanoshells, a new generation of nanomedicines may emerge that can effectively combat undruggable advanced cancers. Our group explores such an arena, where asymmetric plasmonic nanoparticles will be systematically explored for photothermal therapy against drug-resistant cancers.


    4) Anti-bacterial Phototherapy: Multidrug-resistant bacterial strains are on the rise and there is a need for alternatives molecular therapies. Our group in collaboration with organic and material chemists develops nanocomposites that respond to specific wavelengths of light to produce reactive oxygen species towards lysing infectious bacterial cells.


  • Plasmonic nanomaterials for Photothermal Therapy: Gold based anisotropic nanostructures such as nanoshells have shown a huge success in combating drug resistant tumors. Our group works on better engineering of nanoshells towards new generation of nanomedicines for effectively combating undruggable advanced cancers.
  • Organo-Inorganic Biomaterials for Theranostics: Multifunctional biomaterials offer a ‘One for All’ approach towards precise in vivo detection and subsequent treatment of solid tumors. Our group investigates organo-inorganic composite biomaterials for simultaneous therapy and imaging of cancerous tissues.
  • Targeted combinatorial nanomedicines: Combination cancer chemotherapeutic protocols involve difficulties such as variations in pharmacokinetics, membrane transport, dosage and optimization of drug scheduling. Our group investigates polymeric combination nanomedicines towards vehicle uniformity, ratiometric drug loading with temporal site-specific release of the drugs.

Research Highlights


  • Pranjali et al prepared a mesoporous magnetic nanohybrid functionalized with 14 wt% carbon nitride (CN) and loaded with curcumin (Cur) for combination platform for photodynamic therapy and magnetic hyperthermia. CN-Cur complexes on the nanoparticle surface facilitate fast charge separation of hole-electrons under blue LED light irradiation and subsequent singlet oxygen generation. Cur release from the nanoparticle was significant only when exposed to both lysosomal pH (pH=5.2) and an alternating current magnetic field (AMF). The mesoporous magnetic carbon nitride (MMCN) caused a 350% increase in the level of intracellular ROS as compared to the light-exposed untreated control group. The nanohybrid was non-hemolytic and found to be biocompatible with HUVEC cells at concentrations up to 360 µg/mL. A similar concentration under AMF exposure caused a localized temperature rise of 4.2 °C and resulted in a60% reduction in C6 cell viability. The cancer cell death further increased up to 80% under sequential exposure to light and AMF. The combinatorial treatment exerted significant cytoskeletal and nuclear damage in the cancer cells as assessed by confocal microscopy. The nanohybrid also exhibited relaxivity of 88 mM-1 s-1, imparting significant T2weighted contrast to the cancer cells.


    More info: Pranjali Yadav, Cheng Zhang, Andrew K. Whittaker, Kamalakannan Kailasam and Asifkhan Shanavas, Magnetic and Photocatalytic Curcumin Bound Carbon Nitride Nanohybrids for Enhanced Glioma Cell Death, ACS Biomater. Sci. Eng. 2019, 5, 6590.
  • Navneet Kaur et al studied high and low molecular weight PLGA nanoparticles with glycol chitosan and carboxymethyl chitosan coating Glycol chitosan reduced Extraneous Paclitaxel Precipitates (EPPs) during LMW PLGA nanoprecipitation for uniform intracellular drug delivery. Molecular weight wise composition of protein corona varied distinctly between glycol chitosan and carboxymethyl chitosan coatings. Glycol chitosan-coated nanoparticles fared better in terms of compatibility with RBC in its nascent form irrespective of its positive charge.


    More info: Navneet Kaur, Purvi Mathur, Pranjali Yadav, Swaroop Chakraborty, Asifkhan Shanavas, Glycol chitosan in situ coating on PLGA nanoparticle curtails extraneous paclitaxel precipitates and imparts protein corona independent hemocompatibility, Carbohydrate Polymers, 2020. 237, 116170.






PhD Students

  • Ms. Navneet Kaur

    Email: navneet.ph16215@inst.ac.in

    Reg. No.: PH16215

    Working Since Jul, 2016
  • Ms. Pranjali Yadav

    Email: pranjali.ph15205@inst.ac.in

    Reg. No.: PH15205

    Working Since Jul, 2015
  • Ms.Kritika Sood

    Email: kritika.ph17227@inst.ac.in

    Reg. No.: PH17227

    Working Since Jan, 2018
  • Ms. Mimansa

    Email: mimansa.ph19207@inst.ac.in

    Reg. No.: PH19207

    Working Since Aug, 2019

empty! record not found

  1. Synthesis and Anti‐Proliferative Activity of a Triazole‐Fused Thymidine Analogue: A Rahman, P Sharma, N Kaur, A Shanavas*, and PP Neelakandan*, (2020) ChemistrySelect, 5: 5473-5478. DOI: 10.1002/slct.202001013

  2. Glycol chitosan in situ coating on PLGA nanoparticle curtails extraneous paclitaxel precipitates and imparts protein corona independent hemocompatibility: N Kaur, P Mathur, P Yadav, S Chakraborty, A Shanavas, (2020) Carbohydrate Polymers, 237: 116170. DOI: 10.1016/j.carbpol.2020.116170

  3. Dopamine functionalized CuO nanoparticles: A high valued “turn on” colorimetric biosensor for detecting cysteine in human serum and urine samples: D Rohilla, S Chaudhary, N Kaur, A Shanavas, (2020) Materials Science and Engineering: C, 110: 110724. DOI: 10.1016/j.msec.2020.110724

  4. Aggregation Enhances Luminescence and Photosensitization Properties of a Hexaiodo-BODIPY: PPP Kumar, P Yadav, A Shanavas, and PP Neelakandan*, (2020) Mater. Chem. Front., 4: 965-972. DOI: 10.1039/D0QM00010H

  5. Nanomolar Detection of Biothiols via Turn-ON Fluorescent Indicator Displacement: PPP Kumar, N Kaur, A Shanavas, and PP Neelakandan*, (2020) Analyst, 145: 851-857. DOI: 10.1039/C9AN02222H

  6. Magnetic and photocatalytic curcumin bound carbon nitride nanohybrids for enhanced glioma cell death: Yadav, Pranjali; Zhang, Cheng; Whittaker, Andrew; Kailasam, Kamalakannan, (2019) ACS Biomaterials Sciences and Engineering, 5: 6590. DOI: 10.1021/acsbiomaterials.9b01224

  7. A polymeric core-shell combinatorial nanomedicine for synergistic anticancer therapy: Shanavas, Asifkhan; Jain, Nishant; Kaur, Navneet; Thummuri, Dinesh; Prasanna, Maruthi; Prasad, Rajendra; Naidu, Vegi; Bahadur, Dhirendra; Srivastava, Rohit, (2019) ACS Omega, Just accepted manuscript. DOI: 10.1021/acsomega.9b02167

  8. A Three-Component Supramolecular Nanocomposite as a Heavy-Atom-Free Photosensitizer: PPP Kumar, P Yadav, A Shanavas, S Thurakkal, J Joseph, and PP Neelakandan*, (2019) Chem. Commun., 55: 5623-5626. DOI: 10.1039/C9CC02480H

  9. Metal-free visible light photocatalytic carbon nitride quantum dots as efficient antibacterial agents: An insight study: P Yadav, N S Thangaraj, B Purohit, A Shanavas, K Kailasam, (2019) Carbon, 152: 587. DOI: 10.1016/j.carbon.2019.06.045

  10. Synthesis and characterizations of luminescent copper oxide nanoparticles: Toxicological profiling and sensing applications: S Chaudhary, D Rohilla, A Umar, N Kaur, A Shanavas, (2019) Ceramics International, 45, 12,: 15025.. DOI: 10.1016/j.ceramint.2019.04.239

  11. Glycol chitosan assisted in situ reduction of gold on polymeric template for anti-cancer theranostics: A Shanavas, A K Rengan, D Chauhan, L George, M Vats, N Kaur, P Yadav, P Mathur, S Chakraborty, A Tejaswini, A De, R Srivastava, (2018) Int. J. Biol. Macromol, 110: 392-398. DOI: 10.1016/j.ijbiomac.2017.11.127

  12. Enhanced EPR directed and Imaging-guided Photothermal Therapy using Vitamin E Modified Toco-Photoxil: D S Chauhan, A B Bukhari, G Ravichandran, R Gupta, L George, R Poojari, A Ingle, A K Rengan, A Shanavas, R Srivastava, A De, (2018) Scientific Reports, 8: . DOI: 10.1038/s41598-018-34898-3

  13. Supramolecular confinement within chitosan nanocomposites enhance singlet oxygen generation: K Naim, S T Nair, P Yadav,A Shanavas, P P Neelakandan, (2018) ChemPlusChem, 83: 418 –422.. DOI: /10.1002/cplu.201800041

  14. Gold laced bio-macromolecules for theranostic application: P Yadav, S P Singh, A K Rengan, R Srivastava,A Shanavas, (2018) Int. J. Biol. Macromol, 110: 39-53. DOI: 10.1016/j.ijbiomac.2017.10.124

  15. Magnetic core-shell hybrid nanoparticles for receptor targeted anti-cancer therapy and magnetic resonance imaging: A Shanavas, S Sasidharan,D Bahadur,R Srivastava, (2017) Journal of Colloid and Interface Science, 486: 112-120. DOI: 10.1016/j.jcis.2016.09.060

  16. Biocompatible Amphiphilic Pentablock Copolymeric Nanoparticles for Anti-Cancer Drug delivery,: K Byagari, A K Rengan, G C Kundu and R Srivastava, (2014) Journal of Biomedical Nanotechnology, 10: 1-11. DOI: 10.1166/jbn.2014.1791

  17. Magnetic polycaprolactone nanoparticles for anticancer drug delivery: R Patel, A Shanavas,M Aslam,D Bahadur,R Srivastava, (2013) Journal of Nanoscience Letters, 3: 8.

  18. Polyelectrolyte Coated Polymeric Nanoparticles for Controlled Release of Docetaxel: R Agrawal, S Yadav, M Aslam, D Bahadur, and R Srivastava, (2012) Journal of Biomedical Nanotechnology, 8: 1-10. DOI: 10.1166/jbn.2012.1355

  19. Core or/and Surface modified Nanomedicines for Controlled Release of Drug: Dhirendra Bahadur, Rohit Srivastava, (2012) Nanotechnology, .

  1. Multi-layer Nanocomposite: IIT Bombay, (2016) Application number: 811/MUM/2011, Indian Patent Number: 271416, Date of filing: 21st March 2011, Date of grant & recordation in the register of patent: 19th Feb 2016, .

  2. Photo-disintegrable Near-Infra Red responsive gold coated poly (Lactic-co-Glycolic acid) nanostructures and a process for its preparation, Indian patent application number: 4082/MUM/201: (Inventor from INST, Mohali), (2015) .

  1. Systems Oncology conference: Cochin, Kerala., (2017) .

  2. Invited Talk at 3rd Annual Personalized Nanomedicine Symposium: Florida International University, Miami, USA, (2016) .

  3. International Symposium on Nanotechnology and Cancer Theranostics (ISNACT): IIT Bombay., (2015) .

  4. Invited talk: at ICMR sponsored National Conference on Nanotechnology in Drug Delivery Research: Innovations, Challenges and Opportunities, SPPSPTM, NMIMS, Mumbai., (2015) .

  5. Indo-Australian conference on Tissue Engineering, Drug Delivery System and Regenerative Medicine (BiTERM): Anna University, (2015) .

  6. 4th Annual Meeting of American Society for Nanomedicine: Maryland, USA., (2014) .

  7. 3rd NanoToday Conference: Singapore, (2013) .

  8. 4th Bangalore Nano conference: Bangalore, India., (2011) .

  9. XIX International Conference on Bioencapsulation: Amboise, France., (2011) .

Fundings

  • Dynamic Self-assembled Nucleic Acid Analogues 3 years, DBT
    Funding Amount: -
    Role PI: Dr. Prakash P. Neelakandan Role Co-PI: Dr. Asifkhan Shanavas

  • 2015

    Ph.D in Biomedical Engineering

    Indian Institute of Technology Bombay, India.

  • 2010

    M.Tech Nanomedical Sciences

    Amrita Centre for NanoSciences, Kochi, India.

  • 2007

    M.Sc Biochemistry

    PSG College of Arts and Sciences, Coimbatore, India.

  • 2005

    B.Sc Biochemistry (specialized in Biotechnology)

    PSG College of Arts and Sciences, Coimbatore, India

empty! record not found

Awards & Honours

  • 2016- 2017: DBT Indo-Australian Career Boosting Gold Fellowship

  • 2010- 2014: MHRD Institute Teaching Assistantship, IIT Bombay

  • 2013: DST Travel Grant

  • 2011: Bioencapsulation Research Group Travel Grant

  • 2008-2010: DST fellowship, MTech Nanomedical Sciences, ACNS

  • 2006: JNCASR summer research fellowship


Professional Recognitions

  • Indian Association for Cancer Research

  • American Society for Nanomedicine

  •  Indian Society of Nano Medicine