Faculty Directory

Prof. Hirendra N. Ghosh

F.N.A., J.C. Bose Fellow

Our research group chiefly focuses on exploring the linear and non-linear optical aspects for a whole wide range of quantum confined materials such as semiconductors, metals, a variety of heterostructures based on the combination of these materials as well as molecular systems etc. Here in our lab, we employ femtosecond ultrafast transient absorption and terahertz spectroscopy along with other fundamental optical techniques to probe such native optical properties with an ultimate motivation to work towards the upgradation of device efficiency. Our femtosecond setup provides us opportunity to extensively explore the carrier dynamics of these optical materials in UV, Visible, NIR and Terahertz regime depending upon our region of interest. Moreover, the investigations conducted at cryogenic temperatures studies (down to 5K) allow us to gain deeper insights into the excited states carrier behaviour. The thermal deposition and RF sputtering system provides further assistance in fabrication of thin film samples which helps in realization of the spectroscopically investigated materials in the real world device architecture.


Research Interest

  • ·       Direct probe into the ultrafast electron and hole transfer phenomenon  in nanoscale heterostructure; understanding the temporal evolution of the photogenerated quasiparticles such as exciton, biexciton, plasmon, trion, polaron etc. in exotic materials.

  • ·       Femtosecond Transient absorption Spectroscopy in UV, Visible, NIR and Terahertz region both at conventional room temperature and also in the cryogenic regime (down to 5K).

  • ·       Synthesis, characterization and spectroscopic Analysis of doped quantum dot materials, thermally deposited and RF sputtered thin films.

  • ·       Synthesis and spectroscopic investigation in 2D and plasmonic materials

  • ·       Development of Perovskite and Quantum Dot based Solar Cells as well as photodetectors by thermal evaporation and RF sputtering techniques by gaining primary understanding of the underlying photophysics by ultrafast spectroscopic investigations.

Research Highlights

  •        The long-standing interpretations for the exceptional photovoltaic and optoelectronic properties showcased by the perovskite family largely pertain to the underlying complicated interplay of polaron formation and hot carrier cooling. In some of our recent works, we have  primarily focused on reaccessing the existing status of the polaron studies conducted on CsPbBr3based systems in particular, in the framework of the transient absorption investigations. The role of the key aspect that is ultimately accountable for deciding the fate of polaron formation i.e. the carrier- Longtiudinal Optical (LO) phonon coupling has been comprehensively evaluated in terms of the diverse factors which affect this FrÖhlich interaction mediated coupling. Our recent works provide an elaborate discussion regarding the alterations in the lattice polarity, surrounding dielectric medium (10.1021/acs.jpclett.9b01552), lattice temperature (10.1021/acs.jpclett.0c01724) and the system dimensionality (10.1021/acs.jpclett.0c01853) which can influence the charge screening extents and thereby the polaron formation process.

  •       Many body states like exciton, bi-exciton, trion etc. dominate the photophysical properties of the 2D materials and are instrumental for enormous optoelectronic and photovoltaic applications. Herein, our group has studied the charge carrier dynamics of exciton and trion in monolayer MoS2, followed by interfacial charge transfer dynamics in Au@MoS2.Luminescence measurements confirm the presence of both exciton and trion in MoS2, which are drastically quenched after deposition of Au NPs, indicates photo-excited electron transfer from MoS2 to Au. Ultrafast study reveals that photogenerated free carriers form excitons with a time scale of 500 fs and eventually turn into trions within 1.2 ps. Dissociation of excitons and trions has been observed in the presence of Au, with time scales of 600 fs and 3.7 ps, respectively. Understanding the formation and dissociation dynamics of the exciton and trion in monolayer MoS2 is going to help immensely to design and develop many new 2D devices. (10.1021/acs.jpclett.9b01022)

  •         Semiconducting plasmonic nanostructures have emerged as potential candidates for finding relevance in photodetector-based industry, plasmonic photovoltaic device, nanomedicine, chemical nanosensing, and photothermal therapy. Herein, our group has demonstrated ultrafast plasmon dynamics of the Cu2-xS nanocrystals in NIR region. Optical studies confirmed well defined localized surface plasmon resonance (LSPR) absorbance band from near-infrared to mid-infrared arising due to p-type hole vacancy in the doped semiconductor. Hole-hole, hole-phonon and phonon-phonon scattering time constants have been found to be varying depending on composition (copper to sulphur ratio) and excitation wavelength. At moderate pump power hole−phonon relaxation time constant has been observed to be in the range of 240−440 fs for Cu2−xS NCs depending upon pump wavelengths (400, 800 nm). From the ultrafast transient data, the hole−phonon coupling constant (G) determined for Cu2−xS NCs at different excitation wavelengths is also found to be one order lower than the metallic system. We have proposed a new mechanistic scheme for hot carrier relaxation dynamics, in accordance with the two-temperature model as reported in literature for plasmon dynamics. (10.1021/acs.jpcc.9b10043)

PhD Students


    Email: avishek.ph21239@inst.ac.in

    Reg. No.: PH21239

    Working Since Jan, 2022

    Email: vikas.ph21256@inst.ac.in

    Reg. No.: PH21256

    Working Since Jan, 2022

    Email: nitika.ph21213@inst.ac.in

    Reg. No.: PH21213

    Working Since Aug, 2021

    Email: ramchandra.ph21205@inst.ac.in

    Reg. No.: PH21205

    Working Since Aug, 2021
  • Mr. Himanshu Bhatt

    Email: himanshu.ph19216@inst.ac.in

    Reg. No.: PH19216

    Working Since Aug, 2019

    Email: manvi.ph20249@inst.ac.in

    Reg. No.: PH20249

    Working Since Aug, 2020
  • Ms. Ayushi Shukla

    Email: ayushi.ph18205@inst.ac.in

    Reg. No.: PH18205

    Working Since Aug, 2018
  • Ms. Arshdeep Kaur

    Email: arshdeep.ph18206@inst.ac.in

    Reg. No.: PH18206

    Working Since Aug, 2018
  • Ms.Gurpreet kaur

    Email: gurpreet.ph17205@inst.ac.in

    Reg. No.: PH17205

    Working Since Aug, 2017

    Email: tanmay.ph17208@inst.ac.in

    Reg. No.: PH17208

    Working Since Aug, 2017

Post Doc Fellows

  • Dr K. Justice Babu

    Email: jjjustice.chem@gmail.com

    Reg. No.: NPDF2001

    Working Since Jan, 2020
  • Dr Dharmendra Kumar

    Email: dharmendra.pdf2001@inst.ac.in

    Reg. No.: PDF2001

    Working Since Jan, 2020

Research Associates


    Email: samaresh.ra202125@inst.ac.in

    Reg. No.: RA-01-202125

    Working Since Jan, 2022

PhD Students


    Email: nandan.ph16236@inst.ac.in

    Reg. No.: Ph16236

  • Mr. Soumen Ash

    Email: soumen.ph14201@inst.ac.in

    Reg. No.: PH14201

Research Associates


    Email: dharmendra.pdf2001@inst.ac.in

    Reg. No.: RA-1-202105

  1. Unravelling the Surface-State Assisted Ultrafast Charge Transfer Dynamics of Graphene Quantum Dot-Based Nanohybrids via Transient Absorption Spectroscopy: Deepa Sebastian , Athira Pallikkara, Himanshu Bhatt, Hirendra N Ghosh*, and Kala Ramakrishnan*, (2022) J. Phys. Chem. C, 126: 11182–11192. DOI: https://doi.org/10.1021/acs.jpcc.2c02170

  2. Mapping the Real-Time Vibrational Infrastructure of Cs2SnI6 Nanocrystals through Coherent Phonon Dynamics: Gurpreet Kaur , Ayushi Shukla, Kaliyamoorthy Justice Babu, and Hirendra N. Ghosh*, (2022) ACS photonics, . DOI: https://doi.org/10.1021/acsphotonics.2c00512

  3. Chemical Interface Damping in Nonstoichiometric Semiconductor Plasmonic Nanocrystals: An Effect of the Surrounding Environment: Nandan Ghorai and Hirendra N. Ghosh*, (2022) Langmuir, 38: 5339–5350. DOI: https://doi.org/10.1021/acs.langmuir.2c00446

  4. Hot Electron Migration from Gold Nanoparticle to an Organic Molecule Enhances Luminescence and Photosensitization Properties of a pH Activatable Plasmon-Molecule Coupled Nanocomposite: A Rahman, T Goswami, N Tyagi, HN Ghosh*, PP Neelakandan*, (2022) J. Photochem. Photobiol. A: Chem, 432: 114067. DOI: 10.1016/j.jphotochem.2022.114067

  5. Gold–BODIPY Nanoparticles with Luminescence and Photosensitization Properties for Photodynamic Therapy and Cell Imaging: A Rahman, PPP Kumar, P Yadav, T Goswami, A Shanavas*, HN Ghosh*, PP Neelakandan*, (2022) ACS Appl. Nano Mater., 5: 6532-6542. DOI: 10.1021/acsanm.2c00616

  6. Fast Polaron Formation and Low Carrier Mobility in Defect-Free Polyhedral CsPbBr3 Perovskite Nanocrystals: Kaliyamoorthy Justice Babu, Gurpreet Kaur, Ayushi Shukla, Ramchandra Saha, Arshdeep Kaur, Manvi Sachdeva, Dharmendra Kumar Yadav,Hirendra Nath Ghosh*, (2022) ACS photonics, . DOI: https://doi.org/10.1021/acsphotonics.1c01830

  7. Defect-Interceded Cascading Energy Transfer and Underlying Charge Transfer in Europium-Doped CsPbCl3 Nanocrystals: Ayushi Shukla, Gurpreet Kaur, Kaliyamoorthy Justice Babu, Arshdeep Kaur, Dharmendra Kumar Yadav, and Hirendra N. Ghosh*, (2022) J. Phys. Chem. Lett., 13: 83-90. DOI: https://doi.org/10.1021/acs.jpclett.1c03661

  8. Interfacing g-C3N4 Nanosheets with CdS Nanorods for Enhanced Photocatalytic Hydrogen Evolution: An Ultrafast Investigation: Tanmay Goswami, Himanshu Bhatt, Dharmendra Kumar Yadav,Hirendra N. Ghosh*, (2022) J. Phys. Chem. B, 126: 572–580. DOI: https://doi.org/10.1021/acs.jpcb.1c10336

  9. Ultrafast Hot Electron Transfer and Trap-State Mediated Charge Carrier Separation toward Enhanced Photocatalytic Activity in g-C3N4/ZnIn2S4 Heterostructure: Himanshu Bhatt, Tanmay Goswami, Dharmendra Kumar Yadav, Nandan Ghorai, Ayushi Shukla, Gurpreet Kaur, Arshdeep Kaur,Hirendra N. Ghosh*, (2021) J. Phys. Chem. Lett., 12: 11865-11872. DOI: https://doi.org/10.1021/acs.jpclett.1c03356

  10. Probing Ultrafast Hot Charge Carrier Migration in MoS2 Embedded CdS Nanorods: Himanshu Bhatt ,Dharmendra Kumar Yadav,Ramchandra Saha , K. Justice Babu,Hirendra N. Ghosh*, (2021) The Journal of Chemical Physics, . DOI: https://doi.org/10.1063/5.0074155

  11. Enhanced Charge Carrier Separation and Improved Biexciton Yield at the p–n Junction of SnSe/CdSe Heterostructures: A Detailed Electrochemical and Ultrafast Spectroscopic Investigation: Arshdeep Kaur, Tanmay Goswami, Sachin R Rondiya, Yogesh A Jadhav, K Justice Babu, Ayushi Shukla, Hirendra N. Ghosh*, (2021) J. Phys. Chem. Lett., 12: 10958–10968. DOI: https://doi.org/10.1021/acs.jpclett.1c02946

  12. Effect of Surface Ligand on Chemical Interface Damping in Nonstoichiometric Cu2–xS Semiconductor Nanocrystals: A Direct Correlation between Ultrafast Carrier Dynamics and Photoconductivity: Nandan Ghorai and Hirendra Nath Ghosh*, (2021) J. Phys. Chem. C, 125,: 23250–23258. DOI: https://doi.org/10.1021/acs.jpcc.1c06085

  13. Probing conducting interfaces by combined photoluminescence and transport measurements: LaVO3 and SrTiO3 interface as a case study: Anamika Kumari,Joydip De,Sushanta Dattagupta,Hirendra N. Ghosh,Santanu Kumar Pal,S. Chakraverty, (2021) Physical Review B, 104: L081111(1-7). DOI: 10.1103/PhysRevB.104.L081111

  14. Ultrafast Insights into High Energy (C and D) Excitons in Few Layer WS2: Tanmay Goswami, Himanshu Bhatt, K. Justice Babu, Gurpreet Kaur, Nandan Ghorai, and Hirendra N. Ghosh*, (2021) J. Phys. Chem. Lett., 12: 6526–6534. DOI: https://doi.org/10.1021/acs.jpclett.1c01627

  15. Long-range light-modulated charge transport across molecular heterostructures doped protein biopolymers: Somen Mondal*, Nandan Ghorai , Soumyadip Bhuniad , Hirendra. N. Ghosh , and Nadav Amdursky*, (2021) Chemical Science, 12: 8731-8739. DOI: DOI: 10.1039/x0xx00000x

  16. Ultrafast Plasmon Dynamics in Near-Infrared Active Non-stoichiometric Cu2–xSe Nanocrystals and Effect of Chemical Interface Damping: Nandan Ghorai and Hirendra N. Ghosh*, (2021) J. Phys. Chem. C, 125: 11468–11477. DOI: https://doi.org/10.1021/acs.jpcc.1c03166

  17. Defect-Mediated Slow Carrier Recombination and Broad Photoluminescence in Non-Metal-Doped ZnIn2S4 Nanosheets for Enhanced Photocatalytic Activity: Tanmay Goswami, Dharmendra Kumar Yadav, Himanshu Bhatt, Gurpreet Kaur, Ayushi Shukla, K. Justice Babu, and Hirendra N. Ghosh*, (2021) J. Phys. Chem. Lett., 12: 5000−5008. DOI: https://doi.org/10.1021/acs.jpclett.1c01203

  18. Unravelling the Underlying Hot Carrier Transfer and Relaxation Pathways in Type-1 CsPbBr3–PbS System: Gurpreet Kaur, Ramchandra Saha, K. Justice Babu, Ayushi Shukla, and Hirendra N. Ghosh*, (2021) J. Phys. Chem. C, 125: 10516–10525. DOI: https://doi.org/10.1021/acs.jpcc.1c02233

  19. CdS–CNT–CoPi Heterostructures for Simultaneous Exciton Separation: Ultrafast and Photoelectrochemical Studies: Preeti Dagar, Nandan Ghorai, Kasinath Ojha, Hirendra N. Ghosh*, and Ashok K. Ganguli*, (2021) J. Phys. Chem. C, 16: 8684–8695. DOI: https://doi.org/10.1021/acs.jpcc.1c00107

  20. Revealing the electronic structure, heterojunction band offset and alignment of Cu2ZnGeSe4: a combined experimental and computational study towards photovoltaic applications: Sachin R. Rondiya,Dilara Gokcen Buldu ,Guy Brammertz,Yogesh A. Jadhav,Russell W. Cross,Hirendra N. Ghosh ,Thomas E. Davies,Sandesh R. Jadkar,Nelson Y. Dzade,and Bart Vermang, (2021) Phys. Chem. Chem. Phys, 23: 9553-9560. DOI: 10.1039/D0CP06143C

  21. Temperature-Dependent Ultrafast Charge Carrier Dynamics in Amorphous and Crystalline Sb2Se3 Thin Films: Palwinder Singh, Nandan Ghorai, Anup Thakur,Hirendra N. Ghosh*, (2021) J. Phys. Chem. C, 125: 5197–5206. DOI: doi.org/10.1021/acs.jpcc.0c11327

  22. Mechanistic Insights for Photoelectrochemical Ethanol Oxidation on Black Gold Decorated Monoclinic Zirconia: Ritika Wadhwa, Krishna K. Yadav, Tanmay Goswami, Ankush, Sujit Kumar Guchhait, Sunaina, S. T. Nishanthi,Hirendra N. Ghosh*, and Menaka Jha*, (2021) ACS Appl. Mater. Interfaces, 13: 9942–9954. DOI: https://doi.org/10.1021/acsami.0c21010

  23. Fine‐Tuning Plasmon‐Molecule Interactions in Gold‐BODIPY Nanocomposites: The Role of Chemical Structure and Noncovalent Interactions: PPP Kumar, A Rahman, T Goswami, HN Ghosh*, PP Neelakandan*, (2021) ChemPlusChem, 86: 87-94. DOI: 10.1002/cplu.202000545

  24. Concurrent Energy- and Electron-Transfer Dynamics in Photoexcited Mn-Doped CsPbBr3 Perovskite Nanoplatelet Architecture: Kaliyamoorthy Justice Babu, Gurpreet Kaur, Ayushi Shukla, Arshdeep Kaur, Tanmay Goswami,and Hirendra N. Ghosh*, (2020) J. Phys. Chem. Lett., 12: 302-309. DOI: 10.1021/acs.jpclett.0c03267

  25. Hot Carrier Relaxation in CsPbBr3 based Perovskites: A Polaron Perspective: Gurpreet Kaur,and Hirendra N. Ghosh*, (2020) J. Phys. Chem. Lett., 11: 8765–8776. DOI: 10.1021/acs.jpclett.0c02339

  26. Ultrafast Charge Delocalization Dynamics of Ambient Stable CsPbBr3 Nanocrystals Encapsulated in Polystyrene Fiber: K. Justice Babu, Gurpreet Kaur, Liza Biswal, Goutam De, and Hirendra Nath Ghosh*, (2020) Chem. Eur. J., . DOI: 10.1002/chem.202003254

  27. An Insight of Molecular Twisting of Coumarin Dyes: Tushar Debnath and Hirendra N. Ghosh*, (2020) Chemistry Select, 5: 9461 –9476. DOI: 10.1002/slct.202001751

  28. Probing Ultrafast Charge Separation in CZTS/CdS Heterojunctions through Femtosecond Transient Absorption Spectroscopy: Arshdeep Kaur, Tanmay Goswami, K. Justice Babu, Nandan Ghorai, Gurpreet Kaur, Ayushi Shukla, Sachin R. Rondiya, and Hirendra N. Ghosh*, (2020) J. Phys. Chem. C 2020, ,, 124: 19476−19483. DOI: 10.1021/acs.jpcc.0c05658

  29. Temperature-Dependent Trap-Assisted Ultrafast Carrier Dynamics in Amorphous and Crystalline In2Se3 Thin Films: Palwinder Singh, Gurpreet Kaur, Nandan Ghorai, Tanmay Goswami, Anup Thakur, and Hirendra N. Ghosh*, (2020) PHYSICAL REVIEW APPLIED , (2020), 14: 014087. DOI: 10.1103/PhysRevApplied.14.014087

  30. Effect of Confinement on the Exciton and Biexciton Dynamics in Perovskite 2D-Nanosheets and 3D-Nanocrystals: Ayushi Shukla, Gurpreet Kaur, K. Justice Babu, Nandan Ghorai, Tanmay Goswami, Arshdeep Kaur, and Hirendra N. Ghosh*, (2020) J. Phys. Chem. Lett. 2020, ,, 11: 6344−6352. DOI: 10.1021/acs.jpclett.0c01853

  31. Temperature-Dependent Interplay of Polaron Formation and Hot Carrier Cooling Dynamics in CsPbBr3 Nanocrystals: Role of Carrier− Phonon Coupling Strength: Gurpreet Kaur, K. Justice Babu, and Hirendra N. Ghosh, (2020) J. Phys. Chem. Lett., 11: 6206−6213. DOI: 10.1021/acs.jpclett.0c01724

  32. An Experimental and Theoretical Study into Interface Structure and Band Alignment of the Cu2Zn1-xCdxSnS4 Heterointerface for Photovoltaic Applications: Sachin R. Rondiya, Yogesh Jadhav, Nelson Y. Dzade, Raihan Ahammed, Tanmay Goswami, Abir De Sarkar, Sandesh Jadkar, Santosh K. Haram, Hirendra N. Ghosh, (2020) ACS Applied Energy Materials, 3: 5153−5162. DOI: 10.1021/acsaem.9b02314

  33. Impact of one step alloying on the carrier relaxation and charge separation dynamics of CdxZn1-xSe graded nanocrystals: Hirendra N. Ghosh,Partha Maity,Nandan Ghorai,Jayanta Dana, (2020) Journal of Photochemistry and Photobiology A: Chemistry, 388: 112131. DOI: doi.org/10.1016/j.jphotochem.2019.112131

  34. Ultrafast Plasmon Dynamics and Hole–Phonon Coupling in NIR Active Nonstoichiometric Semiconductor Plasmonic Cu2–xS Nanocrystals: Nandan Ghorai,Hirendra N. Ghosh, (2019) The Journal of Physical Chemistry C, 123: 28401-28410. DOI: doi.org/10.1021/acs.jpcc.9b10043

  35. Strategies for extending charge separation in colloidal nanostructured quantum dot materials: Partha Maity,Hirendra N. Ghosh, (2019) Physical Chemistry Chemical Physics, 21: 23283-23300. DOI: https://doi.org/10.1039/C9CP03551F

  36. Ternary Metal Chalcogenides: Into the Exciton and Biexciton Dynamics: Tushar Debnath,Hirendra N. Ghosh, (2019) The journal of physical chemistry letters, 10: 6227-6238. DOI: doi.org/10.1021/acs.jpclett.9b01596

  37. Efficient Photosensitizing Capabilities and Ultrafast Carrier Dynamics of Doped Carbon Dots: Soman Mandal,Anna Yucknovsky,Katherine Akulov,Nandan Ghorai,Tal Schwartz,Hirendra N Ghosh,Nadav Amdursky, (2019) Journal of the American Chemical Society, 141: 15413-15422. DOI: doi.org/10.1021/jacs.9b08071

  38. Hydrogen bond assisted photoinduced intramolecular electron transfer and proton coupled electron transfer in an ultrafast time domain using a ruthenium-anthraquinone dyad: Ananta Dey,Jayanta Dana,Sunul Aute,Amitava Das,Hirendra N. Ghosh, (2019) Photochemical & Photobiological Sciences, 18: 2430-2441. DOI: doi.org/10.1039/C9PP00135B

  39. Correlating Charge‐Carrier Dynamics with Efficiency in Quantum‐Dot Solar Cells: Can Excitonics Lead to Highly Efficient Devices?: Sourav Maiti,Jayanta Dana,Hirendra N. Ghosh, (2019) Chemistry–A European Journal, 25: 692-702. DOI: https://doi.org/10.1002/chem.201801853

  40. Ultrafast Carrier Dynamics of the Exciton and Trion in MoS2 Monolayers Followed by Dissociation Dynamics in Au@MoS2 2D Heterointerfaces: Tanmay Goswami, Renu Rani, Kiran Shankar Hazra,Hirendra N Ghosh*, (2019) The journal of physical chemistry letters, 10: 3057-3063. DOI: https://doi.org/10.1021/acs.jpclett.9b01022

  41. Recent Progress of Electron Storage Mn Center in Doped Nanocrystals: Tushar Debnath,Hirendra N. Ghosh, (2019) The Journal of Physical Chemistry C, 123: 10703−10719. DOI: doi.org/10.1021/acs.jpcc.8b11055

  42. Efficient charge transport in surface engineered TiO2 nanoparticulate photoanodes leading to improved performance in quantum dot sensitized solar cells: Sourav Maiti,F. Azlan,Y. Jadhav,J. Dana,P. Anand,S. K. Haram,G. R. Dey,Hirendra N. Ghosh, (2019) Solar Energy, 181: 195-202. DOI: doi.org/10.1016/j.solener.2019.02.001

  43. Hot Charge Carriers in QuantumDots: Generation, Relaxation, Extraction, and Applications: Pallavi Singhal,Hirendra N. Ghosh, (2019) Chem Nano Mat, 5: 985 –999. DOI: doi.org/10.1002/cnma.201900025

  44. Impact of FRET between Molecular Aggregates and Quantum Dots: Partha Maity,T. Gayathri,Jayanta Dana,S. P. Singh,Hirendra N. Ghosh, (2019) Chemistry–An Asian Journal, 14: 597-605. DOI: doi.org/10.1002/asia.201801688

  45. Improving the Power Conversion Efficiency through alloying in Common Anion CdZnX (X=S, Se) Nanocrystal Sensitized Solar Cells: Sourav Maiti,Pranav Anand,Farazuddin Azlan,Jayanta Dana,Hirendra N. Ghosh, (2019) Chem Phys Chem, 20: 2662– 2667. DOI: doi.org/10.1002/cphc.201900379

  46. S2 and mixed aggregate state emission of thiophene-BODIPY: Partha Maity,T Gayathri,Jayanta Dana,S. P. Singh,Hirendra N. Ghosh, (2019) Journal of Photochemistry and Photobiology A: Chemistry, 368: 147-152. DOI: doi.org/10.1016/j.jphotochem.2018.09.037

  47. Hot Charge Carrier Extraction from Semiconductor Quantum Dots: P. Singhal,Hirendra N. Ghosh, (2018) J. Phys. Chem. C, 122: 17586−17600. DOI: https://doi.org/10.1021/acs.jpcc.8b03980

  48. Solar Conversion Efficiency Performance of a High Temperature Alloy over a Low Temperature One: Comprehending Interfaces through Excitonics Study: T. Debnath, K. Parui, S. Maiti, (2018) J. Phys. Chem. C, 122: 11312−11321. DOI: https://doi.org/10.1021/acs.jpcc.8b03502

  49. Concurrent Ultrafast Electron- and Hole-Transfer Dynamics in CsPbBr3 Perovskite and Quantum Dots: J. Dana, P. Maity, B. Jana, S. Maiti, (2018) ACS Omega, 3: 2706−2714. DOI: https://doi.org/10.1021/acsomega.8b00276

  50. Boosting the Efficiency of Quantum Dot-Sensitized Solar Cells through Formation of the Cation-Exchanged Hole Transporting Layer: S. Maiti, F. Azlan, P. Anand, Y. Jadhav, J. Dana, S. K. Haram, (2018) Langmuir, 34: 50−57. DOI: https://doi.org/10.1021/acs.langmuir.7b02659

  51. Direct Correlation of Excitonics with Efficiency in a Core–Shell Quantum Dot Solar Cell: J. Dana, S. Maiti, V. S. Tripathi, (2018) Chem. Eur. J, 24: 2418 – 2425. DOI: https://doi.org/10.1002/chem.201705127

  52. Inhibiting Interfacial Charge Recombination for Boosting Power Conversion Efficiency in CdSe{Au} Nanohybrid Sensitized Solar Cell: J. Dana, P. Anand, S. Maiti, F. Azlan, Y. Jadhav, S. K. Haram, (2018) J. Phys. Chem. C, 122: 13277−13284. DOI: https://doi.org/10.1021/acs.jpcc.7b08448

  53. Electrochemical Evaluation of Dopant Energetics and the Modulation of Ultrafast Carrier Dynamics in Cu-Doped CdSe Nanocrystals: S. Maiti, J. Dana, Y. Jadhav, T. Debnath, S. K. Haram, (2017) J. Phys. Chem. C, 121: 27233−27240. DOI: https://doi.org/10.1021/acs.jpcc.7b10262

  54. Exciton Dynamics and Formation Mechanism of MEH-PPV Polymer- Based Nanostructures: A. Ghosh, B. Jana, S. Chakraborty, S. Maiti,A. Patra, (2017) J. Phys. Chem. C, 121: 21062−21072. DOI: https://doi.org/10.1021/acs.jpcc.7b08336

  55. Electron-Transfer-Mediated Uranium Detection Using Quasi-Type II Core−Shell Quantum Dots: Insight into Mechanistic Pathways: P. Singhal, S. K. Jha, B. Govind Vats, (2017) Langmuir, 33: 8114−8122. DOI: https://doi.org/10.1021/acs.langmuir.7b00926

  56. Carrier relaxation dynamics in type-II ZnO/CdSe quantum dot heterostructures: S. Verma, (2017) Phys. Chem. Chem. Phys., 19: 24896--24902. DOI: 10.1039/C7CP04069E

  57. Metal–Ligand Complex-Induced Ultrafast Charge-Carrier Relaxation and Charge-Transfer Dynamics in CdX (X=S, Se, Te) Quantum Dots Sensitized with Nitrocatechol: P. Singhal, P. Maity, S. K. Jha, (2017) Chem. Eur. J., 23: 10590 – 10596. DOI: https://doi.org/10.1002/chem.201701271

  58. Light Harvesting and Photocurrent Generation in
a Conjugated Polymer Nanoparticle–Reduced Graphene Oxide Composite: A. Ghosh, B. Jana, S. Maiti, R. Bera,Amitava Patra, (2017) ChemPhysChem, 18: 1308 – 1316. DOI: https://doi.org/10.1002/cphc.201700174

  59. Hot-electron transfer from the semiconductor domain to the metal domain in CdSe@CdS{Au} nano-heterostructures: J. Dana, P. Maity, (2017) Nanoscale, 9: 9723–9731. DOI: 10.1039/C7NR02232H

  60. Tuning Hole and Electron Transfer from Photoexcited CdSe Quantum Dots to Phenol Derivatives: Effect of Electron-Donating and -Withdrawing Moieties: T. Debnath, D. Sebastian, S. Maiti, (2017) Chem. Eur. J., 23: 7306 – 7314. DOI: https://doi.org/10.1002/chem.201700166

  61. Exciton Separation in CdS Supraparticles upon Conjugation with Graphene Sheets: K. Ojha, T. Debnath, P. Maity, M. Makkar, S. Nejati, K. V. Ramanujachary, P. K. Chowdhury,Ashok Kumar Ganguli, (2017) J. Phys. Chem, 121: 6581−6588. DOI: https://doi.org/10.1021/acs.jpcc.7b01150

  62. Demonstrating the role of anchoring functionality in interfacial electron transfer dynamics in the newly synthesized BODIPY–TiO nanostructure Composite: S. Aute, P. Maity, A. Das, (2017) NewJ.Chem, 41: 5215--5224. DOI: 10.1039/C7NJ00668C

  63. An Insight into the Interface through Excited-State Carrier Dynamics for Promising Enhancement of Power Conversion Efficiency in a Mn-Doped CdZnSSe Gradient Alloy: T. Debnath, K. Parui, S. Maiti, (2017) Chem. Eur. J, 23: 3755 – 3763. DOI: https://doi.org/10.1002/chem.201605612

  64. Proton-Coupled Electron-Transfer Processes in Ultrafast Time Domain: Evidence for Effects of Hydrogen-Bond Stabilization on Photoinduced Electron Transfer: A. Dey, J. Dana, S. Aute, P. Maity, A. Das, (2017) Chem. Eur. J., 23: 3455 – 3465. DOI: https://doi.org/10.1002/chem.201605594

  65. Elucidating the Electronic Cross Talk Dynamics Across the Hetero-Interface of Janus CdSe/PbSe Nanocrystals: Sourav Maiti, Tushar Debnath, (2016) J. Phys. Chem. C, 120: 29054–29061. DOI: https://doi.org/10.1021/acs.jpcc.6b11993

  66. Intraband Electron Cooling Mediated Unprecedented Photocurrent Conversion Efficiency of CdSxSe1-x Alloy QDs: Direct Correlation between Electron Cooling and Efficiency: Partha Maity, Sourav Maiti, Tushar Debnath, Jayanta Dana, S. Guin, (2016) Journal of Physical Chemistry C, 120: 21309−21316. DOI: https://doi.org/10.1021/acs.jpcc.6b07876

  67. Involvement of Sub-bandgap States in Sub-picosecond Exciton and Bi-exciton Dynamics of Ternary AgInS2 Nanocrystals: Jayanta Dana, Tushar Debnath, (2016) J. Phys. Chem. Lett., 7: 3206−3214. DOI: https://doi.org/10.1021/acs.jpclett.6b01341

  68. tiple Charge Transfer Dynamics in CsPbBr3 Perovskite Quantum Dots Sensitized Molecular Adsorbate: P. Maity, J. Dana, (2016) J. Phys. Chem. C, 120: 18348−18354. DOI: https://doi.org/10.1021/acs.jpcc.6b06853

  69. Unusually Slow Electron Cooling to Charge Transfer State in Gradient CdTeSe Alloy Nanocrystals Mediated Through Mn Atom: Tushar Debnath, Sourav Maiti, (2016) J. Phys. Chem. Lett., 7: 1359−1367. DOI: https://doi.org/10.1021/acs.jpclett.6b00348

  70. Plasmon Induced Enhancement of Charge Separation in Epitaxial Metal- Semiconductor Nanohybrid Material Anchored with an Organic Molecule: J. Dana, T. Debnath, P.Maity, (2015) J. Phys. Chem. C, 119: 22181–22189. DOI: https://doi.org/10.1021/acs.jpcc.5b06055

  71. Sub-picosecond Exciton Dynamics and Bi-excitonic Feature in Colloidal CuInS2 Nanocrystals: Role of In-Cu Antisite Defects: Tushar Debnath, Sourav Maiti, Partha Maity, (2015) J. Phys. Chem. Lett., 6: 3458−3465. DOI: https://doi.org/10.1021/acs.jpclett.5b01767

  72. Cascading Electron and Hole Transfer Dynamics in CdS/CdTe Core-Shell Sensitized Bromo-Pyrogallol Red (Br-PGR): Slow Charge Recombination in Type II Regime: Partha Maity,Tushar Debnath, Uday Chopra, (2015) Nanoscale, 7: 2698–2707. DOI: https://doi.org/10.1039/c4nr05829a

  73. Slow Electron Cooling Dynamics Mediated by Electron-Hole Decoupling in Highly Luminescent CdSxSe1-x Alloy Quantum Dots: Partha Maity, Tushar Debnath, (2015) J. Phys. Chem. C, 119: 10785–10792. DOI: https://doi.org/10.1021/acs.jpcc.5b03603

  74. Hot Hole Extraction from Quantum Dot to Molecular Adsorbate: Pallavi Singhal, (2015) Chem. Eur. J., 21: 4405 – 4412. DOI: https://doi.org/10.1002/chem.201405947

  75. Ultrafast Hole/Electron Transfer Dynamics in CdSe Quantum Dot Sensitized by Pyrogallol red (PGR): A Super-Sensitization System: Pallavi Singhal, (2014) J. Phys. Chem. C, 118: 16358–16365. DOI: https://doi.org/10.1021/jp408727a

  76. Electron Trap to Electron Storage Conversion of Specially Aligned Mn doped CdSe d-Dot: A Step Ahead on the Design of Higher Efficient Quantum Dot Sensitized Solar Cell: Tushar Debnath,Partha Maity,Sourav Maiti, (2014) J. Phys. Chem. Lett., 5: 2836−2842.. DOI: https://doi.org/10.1021/jz5012719

  77. Tuning Interfacial Charge Separation by Molecular Twist: A New Insight into Coumarin Sensitized TiO2 Film: S. Verma, (2014) J. Phys. Chem. C, 118: 10661–10669. DOI: https://doi.org/10.1021/jp5023696

  78. Ultrafast Hole and Electron Transfer Dynamics in CdS/Di-bromofluorescein (DBF) Super-Sensitized Quantum Dot Solar Cell Materials: Partha Maity,Tushar Debnath, (2013) J. Phys. Chem. Lett., 4: 4020−4025.. DOI: https://doi.org/10.1021/jz402315p

  79. Ultrafast charge transfer dynamics in photoexcited CdTe quantum dot decorated on graphene: Sreejith Kaniyankandy, Sachin Rawalekar, Hirendra N Ghosh, (2012) J. Phys. Chem. C, 116: 16271-16275. DOI: 10.1021/jp303712y

  80. Exciton Energy and Charge Transfer in Porphyrin Aggregate/Semiconductor (TiO2) composites: S. Verma, (2012) J. Phys. Chem. Lett. (Perspective), 3: 1877−1884. DOI: https://doi.org/10.1021/jz300639q

  81. Sequential Energy and Electron Transfer in Polynuclear Metal Complex Sensitized TiO2 Nanoparticle: S. Verma,P. Kar, T. Banerjee, A. Das, (2012) J. Phys. Chem. Lett, 3: 1543−1548. DOI: https://doi.org/10.1021/jz3005305

  82. Synthesis and Optical Properties of Type I CdSe/ZnSe Core–Shell Quantum Dot: Sachin Rawalekar, M Raj, Hirendra N Ghosh, (2012) Science of Advanced Materials, 4: 637-642. DOI: 10.1166/sam.2012.1331

  83. Does Bridging Geometry Influence Interfacial Electron Transfer Dynamics? Case of the Enediol-TiO2 System: Sreejith Kaniyankandy, Sachin Rawalekar, Anik Sen, Bishwajit Ganguly, Hirendra N Ghosh, (2012) J. Phys. Chem. C, 116: 98-103. DOI: 10.1021/jp207054f

  84. Ultrafast Relaxation Dynamics in Graphene Oxide: Evidence of Electron Trapping, S. Kaniyankandy: S. N. Achary,S. Rawalekar, (2011) J. Phys. Chem. C, 115: 19110-19116. DOI: https://doi.org/10.1021/jp206923q

  85. Employing a Photosynthetic Antenna Complex to Interfacial Electron Transfer on ZnO Quantum Dot: J. K. Sainis,Alka Gupta,Sandeep Verma, (2011) J. Phys. Chem. Letter, 2: 858–862.. DOI: https://doi.org/10.1021/jz2002474

  86. Ultrafast hole transfer in CdSe/ZnTe type II core− shell nanostructure: Sreejith Kaniyankandy, S. Rawalekar, Sandeep Verma, and Hirendra N. Ghosh, (2011) The Journal of Physical Chemistry C, 115: 1428-1435. DOI: 10.1021/jp107531h

  87. Ultrafast Carrier Relaxation and Charge Transfer Dynamics in Water Soluble CdTe/CdS Core-Shell Quantum Dots as Studied by Femtosecond Transient Absorption Spectroscopy: S. Rawalekar,S. Kaniyankandy, S. Verma,E.ali, (2010) J. Phys. Chem. C, 114: 1460–1466. DOI: https://doi.org/10.1021/jp909118c

  88. Ultrafast exciton dynamics of J-and H-aggregates of the porphyrin-catechol in aqueous solution: Sandeep Verma, Amrita Ghosh, Amitava Das,Hirendra Nath Ghosh, (2010) J. Phys. Chem. B, 114: 8327-8334. DOI: 10.1021/jp101643c

  89. Sensitization of TiO2 nanoparticles in micro-emulsion by photo-excited dye molecules: A femtosecond transient absorption study: Madhab C Rath, Dipak K Palit, Tulsi Mukherjee, Hirendra N Ghosh, (2009) Journal of Photochemistry and Photobiology A: Chemistry, 204: 209-216. DOI: 10.1016/j.jphotochem.2009.03.024

  90. Efficient luminescence and photocatalytic behaviour in ultrafine TiO 2 particles synthesized by arrested precipitation: Sreejith Kaniyankandy, Hirendra N Ghosh, (2009) J. Mater. Chem, 19: 3523-3528. DOI: 10.1039/B904589A

  91. Evidence of Multiple Electron Injection and Slow Back Electron Transfer in Alizarin-Sensitized Ultrasmall TiO2 Particles: Sreejith Kaniyankandy, Sandeep Verma, Jahur A Mondal, Dipak K Palit, Hirendra N Ghosh, (2009) J. Phys. Chem. C, 113: 3593-3599. DOI: 10.1021/jp809759h

  92. Interfacial Electron Transfer Dynamics in Quinizarin Sensitized ZnS Nanoparticles: Monitoring Charge Transfer Emission: Sachin Rawalekar, Sandeep Verma, Sreejith Kaniyankandy, and Hirendra N. Ghosh, (2009) Langmuir, 25: 3168-3172. DOI: 10.1021/la803503c

  93. Determination of back electron transfer rate from the surface states of quinizarin-sensitized ZrO2 nanoparticles by monitoring charge transfer emission: G Ramakrishna, Hirendra N Ghosh, (2004) Langmuir, 20: 7342-7345. DOI: 10.1021/la0493823

  94. Dynamics of interfacial electron transfer from photoexcited quinizarin (Qz) into the conduction band of TiO2 and surface states of ZrO2 nanoparticles: G Ramakrishna, Ajay K Singh, Dipak K Palit, Hirendra N Ghosh, (2004) J. Phys. Chem. B, 108: 4775-4783. DOI: 10.1021/jp036623r

  95. Effect of Surface Modification on Back Electron Transfer Dynamics of Dibromo Fluorescein Sensitized TiO2 Nanoparticles: Guda Ramakrishna, Amit Das, Hirendra N Ghosh, (2004) Langmuir, 20: 1430-1435. DOI: 10.1021/la035190g

  96. Slow back electron transfer in surface-modified TiO2 nanoparticles sensitized by alizarin: G Ramakrishna, Ajay K Singh, Dipak K Palit, Hirendra N Ghosh, (2004) J. Phys. Chem. B, 108: 1701-1707. DOI: 10.1021/jp036701a

  97. Effect of particle size on the reactivity of quantum size ZnO nanoparticles and charge-transfer dynamics with adsorbed catechols: G Ramakrishna, Hirendra N Ghosh, (2003) Langmuir, 19: 3006-3012. DOI: 10.1021/la020828u

  98. Optical and photochemical properties of sodium dodecylbenzenesulfonate (DBS)-capped TiO2 nanoparticles dispersed in nonaqueous solvents: G Ramakrishna, Hirendra N Ghosh, (2003) Langmuir, 19: 505-508. DOI: 10.1021/la026252q

  99. Efficient electron injection from twisted intramolecular charge transfer (TICT) state of 7-diethyl amino coumarin 3-carboxylic acid (D-1421) dye to TiO2 nanoparticle: G Ramakrishna, Hirendra N Ghosh, (2002) J. Phys. Chem. A, 106: 2545-2553. DOI: 10.1021/jp013803x

  100. Ultrafast electron transfer dynamics from molecular adsorbates to semiconductor nanocrystalline thin films: John B Asbury, Encai Hao, Yongqiang Wang, Hirendra N Ghosh, Tianquan Lian, (2001) 105: 4545-4557. DOI: 10.1021/jp003485m

  101. Charge Transfer Emission in Coumarin 343 Sensitized TiO2 Nanoparticle: A Direct Measurement of Back Electron Transfer: Hirendra N. Ghosh, (1999) J. Phys. Chem. B, 103: 10382–10387. DOI: 10.1021/jp9918611

  102. Femtosecond IR Study of Excited-State Relaxation and Electron-Injection Dynamics of Ru(dcbpy)2(NCS)2 in Solution and on Nanocrystalline TiO2 and Al2O3 Thin Films: John B Asbury, Randy J Ellingson, Hirendra N Ghosh, Suzanne Ferrere, Arthur J Nozik, Tianquan Lian, (1999) The Journal of Physical Chemistry B, 103: 3110-3119. DOI: 10.1021/jp983915x

  103. Dynamics of Electron Injection in Nanocrystalline Titanium Dioxide Films Sensitized with [Ru(4,4‘-dicarboxy-2,2‘-bipyridine)2(NCS)2] by Infrared Transient Absorption: Randy J Ellingson, John B Asbury, Sue Ferrere, Hirendra N Ghosh, Julian R Sprague, Tianquan Lian, Arthur J Nozik, (1998) The Journal of Physical Chemistry B, 102: 6455-6458. DOI: 10.1021/jp982310y


  • (Nomination) JC BOSE National Fellowship 5 years, SERB
    Funding Amount: ~ 95 Lacs
    PI: Prof. Hirendra N. Ghosh
  • Ultrafast Charge Carrier Dynamics of Solar Energy Conversion Materials 3 years, SERB
    Funding Amount: ~ 43 Lacs
    PI: Prof. Hirendra N. Ghosh

  • 1996


    University of Bombay, Mumbai, India

  • 1989


    Indian Institute of Technology, Kharagpur, India

  • Professor (Scientist-G):Institute of Nano Science & Technology, Mohali, India (January 2017 to Present till date )

  • Scientific Officer (H+):Bhabha Atomic Research Centre, Mumbai (July 2016 to January 2017 )

  • Scientific Officer (H):Bhabha Atomic Research Centre, Mumbai (August 2013 to July 2017 )

  • Scientific Officer (G):Bhabha Atomic Research Centre, Mumbai (August 2008 to July 2013 )

  • Scientific Officer (F):Bhabha Atomic Research Centre, Mumbai (August 2003 to July 2008 )

  • Scientific Officer (E):Bhabha Atomic Research Centre, Mumbai (August 1998 to July 2003 )

  • Scientific Officer (D):Bhabha Atomic Research Centre, Mumbai (August 1993 to July 1998 )

  • Scientific Officer (C):Bhabha Atomic Research Centre, Mumbai (August 1990 to July 1993 )

Awards & Honours

  • Recipient of INSA Medal for Young Scientists from Indian National Science Academy, New Delhi.

  • Recipient of A.K. Bose Memorial Award from Indian National Science Academy, New Delhi.

  • Post Doctoral Research Fellowship in Chemistry Department, Emory University, Atlanta, USA for 2 years (1997-1998).

  • Recipient of APA-Prize for Young Scientist from The Asian and Oceanian Photochemistry Association.

  • Recipient of Homi Bhabha Science & Technology Award from Department of Atomic Energy (DAE), India.

  • Recipient of CRSI Bronze Medal  from Chemical Research Society of India, Bangalore.

  • Recipient of “DAE-SRC Outstanding Investigator Award” for the year 2012 from Department of Atomic Energy (DAE), India.

  • Recipient of “C. N. R. Rao National Prize for Chemical Research” in the year 2014 from Chemical Research Society of India, Bangalore.

Professional Recognitions

  • Member of Advisory Editorial Board of Journal of Physical Chemistry (A/B/C)

  • Fellow of National Academy of Science (F. N. A. Sc.), Allahabad, India

  • Fellow of Academy of Science (F.A.Sc.), Bangalore, India

  • Member of Advisory Editorial Board of Chemical Physics

  • Fellow of Indian National Science Academy (F.N.A.), New Delhi, India 

  • Member of Advisory Editorial Board of Journal of Physical Chemistry Letter

  • Recipient of “J C Bose National Fellowship” in the year 2019 from Science and Engineering Research Board, DST, New Delhi.