Rechargeable Zn-Air Battery

Rechargeable Zn-Air Battery

Transition-metal atoms and/or heteroatom-doped carbon nanostructures is a crucial alternative to find a nonprecious metal catalyst for electrocatalytic oxygen reduction reaction (ORR). Dr. Dey's group herein, for the first time demonstrated the formation of binary (Fe–Mn) active sites in hierarchically porous nanostructure composed of Fe, Mn, and N-doped fish gill derived carbon. The catalyst shows remarkable ORR performance with onset potential (Eonset) of 1.03 V and half-wave potential (E1/2) of 0.89 V, slightly better than commercial Pt/C (Eonset = 1.01 V, E1/2 = 0.88 V) in alkaline medium (pH > 13), which is attributed to the synergistic effect of Fe–Mn dual metal center as evidenced from X-ray absorption spectroscopic study. The homemade rechargeable Zn–air battery with the catalyst is outperforming Pt/C with almost stable charge–discharge voltage plateaus at high current density. The present strategy enriches a route to synthesize low-cost bioinspired electrocatalyst that is comparable to/better than any nonprecious-metal catalysts as well as commercial Pt/C. Reference: Inorg. Chem. 2020, 59, 7, 5194-5205
Rechargeable Zn-Air Battery